期刊文献+

标本非均匀性对岩石变形声发射时空分布的影响及其地震学意义 被引量:27

EFFECTS OF HETEROGENEITY IN ROCK SAMPLES ON SPATIAL AND TEMPORAL DISTRIBUTION OF ACOUSTIC EMISSION AND THEIR SIGNIFICANCE IN SEISMOLOGY
下载PDF
导出
摘要 基于一组实验结果 ,讨论了岩石标本的非均匀性 (预存微裂纹和宏观裂纹 )对声发射时空分布的影响 .对比分析表明 ,预存微裂纹的存在使得破裂成核前声发射率快速增加、b值表现出一种短期异常现象 ,即在下降背景上出现起伏 ,从而增加了破裂时间的可预报性 .宏观结构 (节理、层面等 )的存在对声发射率和b值的影响与微裂纹相同 ,而且宏观结构对声发射的空间分布具有控制作用 ,声发射丛集的宏观构造通常控制着未来的主破裂 .这意味着宏观构造的存在使得主破裂的时间和位置预报成为可能 . Based on a set of experimental results, the effects of heterogeneity (pre existing microcracks and macrostructures) in rock sample on spatial and temporal distribution of acoustic emission (AE) were discussed. The comparative analysis indicates that the existence of pre existing microcracks makes AE occurrence rate rapidly increase prior to the fracture nucleation. In addition, the b value shows a short term anomaly, i.e . fluctuation on a decreasing background, which increases the predictability of the fracturing time. The effects of pre existing macrostructures, such as joint, bedding plane on AE occurrence rate and b value are the same as that of microcracks. AE spatial distribution is controlled by the pre existing macrostructures and the macrostructure clustered by AE events usually controls the coming final fracture. This means that the existence of macrostructures makes prediction of the time and location of the final fracture possible.
出处 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2004年第1期127-131,I006,I007,共7页 Chinese Journal of Geophysics
基金 国家"十五"科技攻关项目 (2 0 0 1BA60 1B0 2 ) 国家重点基础研究发展规划项目 (G19980 40 70 4)
关键词 声发射 非均匀性 微裂纹 宏观构造 岩石变形 实验地震学 Acoustic emission, Heterogeneity, Microcracks, Macrostructures
  • 相关文献

参考文献9

  • 1[1]Lockner D. The role of acoustic emission in the study of rock fracture. Int. J. Rock Mech. Min. Sci., 1993, 30:883 ~ 900
  • 2[3]Mogi K. Stusy of elastic shocks caused by the fracture of heterogeneous materials and its relation to earthquake phenomena. Bull.Earthq. Res. Inst. Tokyo Univer., 1962, 40:125~ 173
  • 3[4]Mogi K. Source location of elastic shocks in the fracturing process in rock (1). Bull. Earthq. Res. Inst Tokyo Univer., 1968, 46:1103~ 1125
  • 4[15]Sobolev G, Getting C, Spetzier H. Laboratory study of the strain field and acoustic emissions during the failure of a barrier. J. Geophys.Res., 1987, 92:9311 ~9318
  • 5[16]Liu Liqiang, Ma Shengli, Ma Jin, et al. Effect of rock structure on the statistic characteristics of acoustic emission. Erthquake Research in China, 1999, 13(3) :355 ~ 366
  • 6[17]Lei X, Kusunose K, Nishizawa O, et al. On the spatio-temporal distribution of acoustic emissions in two granitic rocks under triaxial compression: the role of pre-existing cracks. Geophys. Res. Lett.,2000, 27(13): 1997 ~ 2000
  • 7[18]Lei X, Nishizawa O, Kusunose K, et al. Compressive failure of mudstone samples containing quartz veins using rapid AE monitoring: the role of asperities. Tectonophysics, 2002, 328: 329 ~ 340
  • 8[19]Lei X, Kusunose K, Satoh T, et al. Hierarchical rupture process of fault: an experimental study. Phys. Earth Plnet. Inter., 2003,137:213 ~ 228
  • 9[20]Lei X, Nishizawa O, Kusunose K, et al. Fractal Structure of the hypocenter distribution and focal mechanism solutions of AE in two granites of different grain size. J. Phys. Earth, 1992, 40:617 ~ 634

同被引文献311

引证文献27

二级引证文献258

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部