期刊文献+

OLAP中基于FP-增长的关联规则挖掘 被引量:2

Mining of Association Rules on the Basis of FP-Growth in OLAP
下载PDF
导出
摘要 关联规则挖掘是一种发现属性间关系的方法,主要用于在商务事务记录中挖掘事务间关系。本文将已经广泛使用的FP-增长(frequent-pattern growth,频繁模式增长)算法进行改进,实现了OLAP中的关联规则挖掘。改进算法分别针对单维、多维、混合维三种关联规则,将多维立方体转化成不同的关系表,通过关系表产生关联规则,并利用立方体中的事实值作为进一步约束,生成了更有价值的规则。 Mining of association rules is a method to find the relation among the attributes. It is mainly used to find the relations of transactions in the business transaction records. This paper realizes the mining of association rules in OLAP by improving the FP-Growth algorithm which is widely used. The improved algorithm converses the cube into the different relation tables according to the types of association rules, intra dimensional rules. inter dimensional rules and hybrid dimensional rules. And it generates association rules from the relation tables. This paper also introduces the method of generating more interesting rules constrained by the factual value in the cube.
机构地区 江苏大学
出处 《计算机科学》 CSCD 北大核心 2004年第4期113-116,122,共5页 Computer Science
基金 国家863计划重点课题(2002AA412020) 江苏省自然科学基金(No.BK200204)
关键词 数据挖掘 关系数据库 事务数据库 关联规则 OLAP Data mining , OLAP, Mining of association rules. FP-Growth
  • 相关文献

参考文献9

  • 1Chaudhuri S, Dayal U. An overview of data warehousing and OLAP technology. ACM SIGMOD Record, 1997,26: 65-74
  • 2Han Jiawei. Towards On-Line Analytical Mining in Large Databases. 1998
  • 3Han Jiawei, Chee S H S, Chiang J Y. Issues for On-Line Analytical Mining of Data Warehouses. 1998
  • 4Hu Xiaohua, Cercone N. An OLAM Framwork for Web Usage Mining and Business Intelligence Reporting. 2002 IEEE
  • 5Fabris C C, Freitas A A. Incorporating Deviation-Detection Functionality into the OLAP Paradigm. 2001
  • 6Zhu Hua. Online analytical mining of association rules. 1998
  • 7Agrawal R, Imielinski T, Swami A. Mining association rules between sets of items in large databases. In: Proc. of the ACM SIGMOD Conf. on Management of data, 1993. 207-216
  • 8Houtsma M. A run Swam i. Set-oriented mining of association rules [A]: [Research Report RJ 9567]. IBM Almaden Research Center [C]. San Jose, California: [s. n. ] 1993
  • 9Han Jiawei, Pei Jian, Yin Yiwen. Mining Frequent Patterns without Candidate Generation. In: Proc. of the ACM Int. Conf.on Management of Data, Dallas, TX, May 2000

同被引文献14

  • 1钱增瑾,辛燕.中医药数据预处理方法的设计与实现[J].计算机工程与设计,2005,26(12):3199-3200. 被引量:12
  • 2沈国强,覃征,沈云斐.一种高效的多维多层关联规则挖掘算法[J].计算机工程与应用,2006,42(12):174-176. 被引量:7
  • 3张玉峰,部先永,晏创业.动态竞争情报及其采集基础[J].中国图书馆学报,2006,32(6):28-31. 被引量:13
  • 4LAVALLE S M,FINE P W,KAVRAKI L E,et al.A randomized kinematics-based approach to pharmacophore-constrained conformational search and database screening[J].Journal of Computational Chemistry,2001,21(9):731-747.
  • 5HAN Jiawei,KAMBER M.Data mining:concepts and technique[M].USA:Morgan Kaufmann Publishers,2001.
  • 6XIN Yan,JU Shiguang.Mining conditional hybrid-dimensional associa-tion rules on the basis of multi-dimension transaction database:proc.of the 2nd International Conference on Machine Learning and Cybernetics(ICMLC 2003)[C].[S.l.]:[s.n.],2003:216-221.
  • 7CARLOS O,CESAR A,BRAAL S L.Discovery interesting association rules in medical data:proc.of ACM SIGMOD Workshop on Research Issuse on Data Mining and Knowledge Discovery(DMKD 2000)[C].[S.l.]:[s.n.],2000:78-85.
  • 8CATLETT J.On changing continmous attributes into ordered discrete attributes:proc.of European Working Session on Learning,Lecture Notes in Artificial Intelligent[C].[S.l.]:[s.n.],1991:167-178.
  • 9彭涛,曾蒸,代晓红,胡飞.基于语义分层迭代法的网页挖掘技术[J].重庆工商大学学报(自然科学版),2007,24(5):477-480. 被引量:2
  • 10黄勇,刘锋.关系数据库中多维关联规则挖掘的一种新算法[J].计算机应用与软件,2007,24(10):60-61. 被引量:7

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部