期刊文献+

十字型出口人员疏散的堵塞研究 被引量:11

Study of Evacuation Jamming Transition in Crossing Exit
下载PDF
导出
摘要 在开放边界条件下 ,采用无后退有偏随机走动者格子气模型对十字路口的行人疏散动力学进行了计算和模拟。结果显示 ,当纬向边界行人密度保持恒定时 ,经向和纬向通道行人堵塞现象的出现取决于不同的经向边界行人密度 ;当纬向通道宽度保持不变时 ,发生堵塞的临界边界行人密度取决于不同的经向通道宽度 ,纬向和经向的行人堵塞动力学演变具有不同的特征。 Under the condition of open boundary, pedestrian evacuation dynamics in crossing exit is simulated through the lattice gas model of biased random walkers without back step. Attention is concentrated on the mean velocity of pedestrian flow while simulating and analyzing, for it is the key factor to study the fundamental rules between the boundary density and width of route and to estimate jam transition during evacuation. In the simulation, the jamming transitions are observed at the longitudinal route or latitudinal route or both routes when the longitudinal pedestrian boundary density increases under the constant values of latitudinal pedestrian boundary density. Fixing the width of latitudinal route, a series of critical boundary densities which indicate the jamming transition are gained under different values of width of longitudinal route. By plotting the relation in certain coordinate system, the phase diagram can be concluded, which can express the jamming transition clearly. It is found in the phase diagram that the longitudinal and latitudinal dynamical phase transitions present different patterns. In the end, it should be pointed that the simulation results in this paper will be helpful for the design of evacuation routes.
出处 《中国工程科学》 2004年第4期56-60,共5页 Strategic Study of CAE
基金 国家重点基础研究发展规划 (九七三 )资助项目(2 0 0 1CB40 960 0) 国家自然科学基金重大国际合作研究资助项目(5 0 3 2 0 12 0 15 6)
关键词 人员疏散 格子气模型 堵塞 相变 火灾 evacuation lattice gas model jamming phase transition fire
  • 相关文献

参考文献19

  • 1[1]Treiber M,Hennecke A,Helbing D.Congested traffic states in empirical observations and microscopic simulations[J].Phys Rev E,2000,62(2):1805~1824
  • 2[2]Lee H Y,Lee H W,Kim D.Dynamic states of a continuum traffic equation with on-ramp[J].Phys Rev E,1999,59(5):5101~5111
  • 3[3]Nagatani T.Jamming transition in a two-dimensional traffic flow model[J].Phys Rev E,1999,59(5):4857~4864
  • 4[4]Biham O,Middleton A A,Levine D.Self-organization and a dynamic transition in traffic-flow models[J].Phys Rev A,1992,46(10):6124~6127
  • 5[5]Nagatani T.Jamming transition in the traffic-flow model with 2-level crossings[J].Phys Rev E,1993,48(5):3290~3294
  • 6[6]Cuesta J A,Martinez F C,Molera J M,et al.Phase-transitions in 2-dimensional traffic-flow models[J].Phys Rev E,1993,48(6):4175~4178
  • 7[7]Chung K H,Hui P M,Gu G Q.2-Dimensional traffic flow problems with faulty traffic lights[J].Phys Rev E,1995,51(1):772~774
  • 8[8]Helbing D,Schweitzer F,Keltsch J,et al.Active walker model for the formation of human and animal trail systems[J].Phys Rev E,1997,56(3):2527~2539
  • 9[9]Helbing D,Keltsch J,Molnar P.Modelling the evolution of human trail systems[J].Nature,1997,388(6637):47~50
  • 10[10]Helbing D,Farkas I,Vicsek T.Simulating dynamical features of escape panic[J].Nature,2000,407(6803):487~490

同被引文献134

引证文献11

二级引证文献96

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部