期刊文献+

滇西富碱斑岩型矿床岩体和矿脉同位素地球化学研究 被引量:45

Isotopic Geochemistry of Rock Mass and Ore-vein from Alkali-rich Porphyry Type Deposits in Western Yunnan, China
下载PDF
导出
摘要 选取马厂箐铜钼金矿、金厂箐金矿、北衙铅金矿和姚安铅银金矿四个典型的富碱斑岩型多金属矿床,对岩体和矿脉的铅、硅、氢、氧、硫、碳及氦、氩同位素分析。结果表明,富碱岩浆和富硅成矿流体的最初和主要铅源均来自地幔,但混染了部分地壳或地层铅;富碱岩浆起源于地幔交代作用形成的富集地幔源区,而富硅成矿流体则具有原始地幔流体性质,前者的硅同位素组成表现为经历强烈动力分馏的高正值;后者则为几乎未经动力分馏的低负值。综合研究表明,该类矿床的成矿作用是在富碱岩浆的成岩过程中,伴随富硅成矿流体对岩体和地层围岩的(自)交代蚀变作用,并与岩石一定程度混染而实现的。因此,富硅成矿流体作用实质上是地幔流体交代作用在地壳内成矿作用中的延续。 In this paper, four typical alkali-rich porphyry type deposits are studied by means of lead,silicon,hydrogen,oxygen,sulphur,carbon,helium and argon isotope from rockbodies and ore-veins in deposits, and the following conclusions could be obtained. The initial lead and most lead source of alkali-rich magma and silicon-rich mineralizing fluid were derived from mantle, yet it is inevitably that mantle lead mixed with some lead from crust or strata; The alkali-rich magma derived from a source in enriched mantle to be formed by mantle metasomatism is characterized by high positive number of silicon isotope composition experienced intense dynamic fractionation. But the silicon-rich mineralizing fluid, which has the nature of primary mantle, is characterized by low negative number of silicon isotope composition without dynamic fractionation. To sum up, we beliere that the mineralization was completed by silicon-rich ore-fluid auto-metasomatism to country rocks (including alkali-rich porphyry and stratum rock), and by mixing with crust rock to varying extent, during crystallization of alkali-rich magma. The silicon-rich mineralizing fluid process is a continuation of mineralization led by the mantle fluid metasomatism in crust.
机构地区 成都理工大学
出处 《矿物岩石地球化学通报》 CAS CSCD 2004年第1期32-39,共8页 Bulletin of Mineralogy, Petrology and Geochemistry
基金 中国地质调查局综合研究项目资助(200110200046)
关键词 富碱斑岩型矿床 岩体 矿脉 岩浆和流体 同位素地球化学 滇西新生代 alkali-rich porphyry deposit rock mass and ore-vein magma and fluid isotopic geochemistry Cenozoic era in western Yunnan
  • 相关文献

参考文献14

  • 1[1]Liu Xianfan, Zhan Xinzhi, Gao Zhenmin, Liu Jiajun, Li Chaoyang,Su Wenchao. Deep xenoliths in alkalic porphyry,Liuhe, Yunnan, and implications to petrogenesis of alkalic porphyry and associated mineralizations[J]. Science in China (Series D), 1999,42 (6): 627-635.
  • 2[7]Zartman R E, Doe B R. Plumbotectonics: The model [J].Tectono. Physics, 1981, 75: 135-162.
  • 3[12]Doss L, Murthy V R. A Nd isotope study of the Kerguelen Islands: Iuference on enriched oceanic mantle sources [J].Earth and Planet. Sci. Lett. , 1980,48 : 268- 276.
  • 4[14]Sanders A D,Tarney J, Weaver S D. Transverse geochemical variations across the Antarctic Peninsula:Implications for the genesis of calc-alkaline magmas[J]. Earth and Planet. Sci.Lett. ,1980,46:344-360.
  • 5[15]Taylor H P. Oxygen and hydrogen isotope relationships in hydrothermal mineral deposits[A]. Barnes H L, ed. Geochemistry of hydrothermal ore deposits[M]. New York: Wiley Intersci, 1979, 236-277.
  • 6[16]Turner G, Burnard P B, Ford J L. Tracing fluid sources and interaction[J]. Phil. Trans. R. Soc. Lond A, 1993,344:127-140.
  • 7[17]Stuart F M, Burnard P G, Taylor R P. Resolving mantle and crustal contributions to ancient hydrothermal fluids: He Ar isotopes in fluid inclusions from Dae Hwa W-Mo mineralization, South Korea[J]. Geochim. Cosmochim. Acta, 1995,59:4663-4673.
  • 8[19]Marty B, Jambon A, Sano Y. Helium isotopes and CO2 in volcanic gases of Japan[J]. Chem. Geol. , 1989,76: 25-40.
  • 9[20]Stuart F M, Turner G, Duckworth R C. Helium isotopes as tracers of trapped hydlrothermal fluids in ocean floor sulfides[J]. Geology, 1994, 22: 823-826.
  • 10[21]Simmons S F, Sawkins F J, Schlutter D J. Mantle derived helium in two Peruvian hydrothermal ore deposits [J]. Nature, 1987, 329: 429-432.

同被引文献584

引证文献45

二级引证文献279

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部