期刊文献+

第四类Painlevé方程解的渐近性态分析 被引量:2

Analysis of asymtotics of general fourth Painlevé equation
下载PDF
导出
摘要 近年来关于Painlev啨方程解的渐近性态有了许多结果,但对第四类Painlev啨  y″=y′22y+32y3+4xy2+2(x2-α)y+βy方程解的渐近性态的研究并不多.给出一类振荡渐近解的表达形式:  y=-23x+Bcos(33x2+bln|x|+c)+O(|x|-1),x→±∞. There are many results on the asymptotics of the Painlevé transcendents in recent years, but the asymptotics of the fourth Painlevé transcendent has not almost been studied.The form of expression of the asymptotics vibrational solutiony=-23x+Bcos(33x^2+bln|x|+c)+O(|x|^(-1)),x→±∞, is given for the fouth Plainlevé equation:y″=y′~22y+32y^3+4xy^2+2(x^2-α)y+βy.
出处 《山东理工大学学报(自然科学版)》 CAS 2004年第2期12-15,共4页 Journal of Shandong University of Technology:Natural Science Edition
关键词 Painlevé方程解 渐近性态 振荡渐近解 中极值点 Painlevé equation vibrational solution asymptotics
  • 相关文献

参考文献10

  • 1Garnier R. Contributionia Pétude dés solutions de l' equation(V)de Painlevé [J]. J. MathR. Pures. Appl, 1967,46:353-412.
  • 2Kitaev A V. The method of isomondromy deformations and the asymptotics of solutions of the" completele" third Painlevé equation [J].Math. USSR Sbornik, 1987,62:421-444.
  • 3Shimomura S. On solutions of the fifth Painlevé eqution on the positive real axis Ⅰ [J]. Funkcialaj Ekvacioj,1985,28:341-370.
  • 4Shimomura S. On solutions of the fifth Painlevé eqution on the positive real axis Ⅱ [J]. Funkcialaj Ekvacioj, 1987,28:203-224.
  • 5Lu Y oumin. Asymtotics of the Nonnegative Solutions of then General Fifth Painlevé Equation [ J ]. Applicable Analysis. 1999,72 ( 3-4 ) :501-517.
  • 6Mazzocco M. Picard and Chazy Solutions to PainlevéⅥ equation [J]. Math. AG/9901054 1999,13:1-35.
  • 7Mazzocco M. Rational Solutions to PainlevéⅥ equation, nlin. Si/0007036 2000,24:1-13.
  • 8Ovldiu Costin, Rodica D Costin. Asymptotis Properties of a Family of Solutions of the Painlevé Equation [J]. IMRN 2002. No. x.
  • 9商妮娜,秦惠增.第三类Painlevé方程解的渐近性态分析[J].山东理工大学学报(自然科学版),2004,18(1):54-57. 被引量:3
  • 10Lu Youmin. On the Asymptotic Representation of the Solutions to the Fourth General Painlevé Equation [ J ]. IJMMS 2003,2003,13: 845-851.

二级参考文献8

  • 1Ovldiu Costin, Rodica D. Costin Asymptotis Properties of a Family of Solutions of the Painlevé Equation[J]. IMRN, 2002,No. x.
  • 2Gamier R. Contributionia Pétude dés solutions de l'equation (V)de Painlevé[J]. J.Math. Pures. Appl, 1967,46:353-412.
  • 3Kitaev A V. The method of isomondromy deformations and the asymptotics of solutions of the "completele" third Painlevé equation[J]. Math. USSR Sbornik, 1987,62:421-444.
  • 4Shimomura S. On solutions of the fifth Pairdevé equation on the positive real axis I[J]. Funkcialaj Ekvacioj, 1985,28:341-370.
  • 5Shimomura S. On solutions of the fifth Pairdevé equation on the positive real axis Ⅱ[J]. Funkcialaj Ekvacioj, 1987,28:203-224.
  • 6LU Youmin. Asymtotics of the Nonnegative Solutions of the General Fifth Painlevé Equation[J]. Applicable Analysis, 1999,72(3-4) :501- 517.
  • 7Mazzocco M. Picard and Chazy Solutions to Pairdevé VI equation[J]. Math. AG/9901054vl. 1999, (1) : 1-35.
  • 8Mazzocco M. Rational Solutions to Painlevé VI equation[ J ]. nlin. Si/0007036, 2000,24:1-13.

共引文献2

同被引文献15

  • 1斯仁道尔吉.组合KDV方程的新的相似约化[J].内蒙古师范大学学报(自然科学汉文版),1996,25(2):1-6. 被引量:3
  • 2郭玉翠,徐淑奖.描述顺流方向可变剪切流动的一类变系数Boussinesq方程的Painlevé分析和相似约化[J].应用数学学报,2006,29(6):1054-1062. 被引量:4
  • 3卡姆克E.常微分方程手册[M].北京:科学出版社,1977..
  • 4Shimomura S. On solutions of the fifth Painleve eqution on the positive real axis Ⅱ [J], Funkcialaj Ekvacioj, 1987,28: 203-224.
  • 5Lu Youmin, McLeod J B. Asymtotics of the Nonnegative Solutions of then General Fifth Painleve Equation[J ]. Applicable Analysis. 1999,72(3-4): 501-517.
  • 6Gamier R. Contributionia Petude des solutions de l'equation (V) de Painleve[J]. J. Math. Pures. Appl, 1967,46: 353-412.
  • 7Kitaev A V, The method of isomondromy deformations and the asymptotics of solutions of the "completele" third Painleve equation[ J ].Math. USSR Sbomik, 1987,62:421-444.
  • 8Shimomura S. On solutions of the fifth Painleve eqution on the positive real axis Ⅰ[J]. Funkcialaj Ekvacioj, 1985,28:341-370.
  • 9Hodyss D,Nathan T R. Phys Rev Lett,2004,93:074502--1--4.
  • 10Clarkson P A, Kruskal M D. New similarity reductions of Boussinesq equation [J]. J Math Phys, 1989,30:2 201--2 213.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部