期刊文献+

L^p Estimates for Riesz Transform Associated to Schrdinger Operator

由Schrdinger算子定义的Riesz变换的L^p估计(英文)
下载PDF
导出
摘要 In this paper we consider the boundedness of Riesz transform associated touniformly elliptic operators L =--div(A(x)) + V(x) with non-negative potentials V onR^n which belonging to certain reverse Holder class. 本文主要讨论了当非负位势 V(x)属于某逆Holder类时,由一致椭圆算子L=-div(A(x))+V(x)所定义的 Riesz变换在 L^p空间的有界性。
作者 朱月萍
出处 《Journal of Mathematical Research and Exposition》 CSCD 北大核心 2004年第2期231-238,共8页 数学研究与评论(英文版)
关键词 Riesz transform Schrodinger operators Riesz变换 Schroedinger算子
  • 相关文献

参考文献11

  • 1ALEXOPOULOS G. La conjecture de Karo pour des operateurs differentiels elliptiques, a coeifficients periodiques [J]. C. R. Acad. Sci., Paris, 1991, 312: 263-266.
  • 2AUSCHER P, HOFMANN S, LACEY M. et al. The solution of the Kato's conjecture [J]. C.R. Acad. Sci. Paris, 2001, 332(1): 601-606.
  • 3AUSCHER P, TCHAMITCHIAN P. Square Root Problem for Divergence Operators and Related Topics [M]. Asterisque, 249.
  • 4DUONG X, MCINTOSH A. Tihe Lp boundedness of Riesz transforms associated with divergence form operator, in: Workshopon Analysis and Applications, Brisbane, 1997. Proceedings of the Centre for Mathematical Analysis [C]. ANU, Canberra, 1999, 37: 15-25.
  • 5GIAQUINTA M. Introduction to Regularity Theory for nonlinear Elliptic Systems [M]. Birkhauser Verlag, 1993.
  • 6GRUTER M, WIDMAN K O. The Green function for uniformly elliptic equations [J]. Manuscripta Math., 1982, 37: 303-342.
  • 7KATO T. Perturbation Theory for Linear Operators [M]. Springer-Verlag, Berlin, NewYork,1966.
  • 8KURATA K, SUGANO S. A remark on estimates for uniformly elliptic operators on weiglhted Lp spaces and Morry spaces [J]. Math. Nachr., 2000, 209: 137-150.
  • 9SHEN Z. On tihe Neumann problem for Schrodhnger operator in Lipschitz domains [J]. Indiana Univ. Math. J., 1994, 43(1): 143-176.
  • 10SHEN Z. Lp estimates for Schrodinger operators with certain potentials [J]. Ann. Inst.Fourier, Grenoble, 1995, 45(2): 513-546.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部