期刊文献+

并联机构中奇异位形的分类与判定 被引量:17

CLASSIFICATION AND IDENTIFICATION OF SINGULARITIES OF PARALLEL MECHANISM
下载PDF
导出
摘要 基于拓扑学和微分几何等数学工具研究并联机构位形空间的拓扑几何性质,并据此对并联机构中存在的奇异位形进行分类,揭示了各种奇异位形的不同物理意义,同时给出了不同奇异位形的计算方法。该方法适用于一般并联机构的奇异位形计算。最后对几种典型并联机构的奇异性进行了分析。 The various topological and geometrical properties of configuration spaces of parallel manipulators are researched using differentiable geometry tools. A finer classification and identification method for singularities in parallel mechanisms is presented and the underlying physical meaning of the various singularities is discussed. The proposed analysis approach can be applied to general parallel manipulators. Some classical parallel manipulators are tested and the results verify the effectiveness of the proposed theory.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2004年第4期26-31,共6页 Journal of Mechanical Engineering
基金 国家自然科学基金-香港青年学者合作研究基金资助项目(50029501)
关键词 并联机构 奇异位形 位形空间 微分几何 拓扑学 Parallel manipulator Singular configuration Configuration spaces Differentiable geometry
  • 相关文献

参考文献10

  • 1Richard M, Li Z X, Sastry S S. A Methematical Introduction to Robotic Manipulation. Florida, USA:CRC Press, 2000
  • 2Gosselin C, Angeles J. Singularity analysis of closed-loop kinematic chain. IEEE Trans. Robotics and Autom., 1990, 6(3):281~290
  • 3Hunt K H. Kinematic Geometry of Mchanisms. Oxford: Charendon Press, 1978
  • 4Kumar V. Instantaneous kinematics of parallel-chain robotic mechanisms. Transaction of the ASME: Journal of Mechanical Design, 1992, 114(2):349~358
  • 5Merlet J P. Singular configuration of parallel manipulators and grassman geometry. The Int. Journal of Robotics Research, 1989, 8(5):45~56
  • 6赵新华,彭商贤.并联机器人奇异位形研究[J].机械工程学报,2000,36(5):35-37. 被引量:32
  • 7Park F C, Kim J W. Singularity analysis of closed kinematic chains. Transaction of the ASME: Journal of Mechanical Design, 1999, 121(1):32~38
  • 8Liu G F, Wu Y L, Wu X Z, et al. Analysis and control of redundant parallel manipulators. In:IEEE International Conference on Robotics and Automation, 2001, Korea, 2001:3 74 8~3 754
  • 9陈维桓. 微分流形初步. 北京:高等教育出版社, 1998
  • 10Arnold V I, Gusein-Zade S M, Varchenko A N. Singularities of Differentiable Maps. Boston:Birkh?user Boston, 1985

二级参考文献2

  • 1Hao F,J Robotic Systems,1998年,15卷,1期,43页
  • 2黄真,空间机构学.2,1991年

共引文献31

同被引文献342

引证文献17

二级引证文献137

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部