期刊文献+

G-凸空间内的抽象广义矢量平衡问题 被引量:7

Abstract Generalized Vector Equilibrium Problems in Generalized Convex Spaces
下载PDF
导出
摘要 作为矢量变分不等式问题的一个重要发展方向 ,在G 凸空间内研究了一类抽象广义矢量平衡问题 (简称AGVEP) ,并利用广义S R KKM型定理 ,在非紧的G In this paper, a class of abstract generalized vector equilibrium problems (in short AGVEP) is studied in G-convex spaces. By using the generalized S-R-KKM type theorem, some new existence theorems of equilibrium points for the AGVEP are established in noncompact G-convex spaces.
作者 李艳 丁协平
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 2004年第3期234-237,共4页 Journal of Sichuan Normal University(Natural Science)
基金 四川省教育厅重点科研基金资助项目
关键词 抽象广义矢量平衡问题 广义S-R-KKM型映像 G-凸空间 Abstract generalized vector equilibrium problem Generalized S-R-KKM mapping G-convex space
  • 相关文献

参考文献13

  • 1Giannessi F. Theorems of alternative, quadratic programs and complementarity problems[A]. Variational Inequalities and complementarity Problems[C]. Chichester:John Wiley and Sons,1980.151-186.
  • 2Ding X P, Park J Y. Generalized vector equilibrium problems in generalized convex spaces [J]. J Optim Theory Appl,2004,120(2):327-353.
  • 3Ding X P. Generalized G-KKM theorems in generalized convex spaces and their applications[J]. J Math Anal Appl,2002,266:21-37.
  • 4Lin L J, Park S. On some generalized quasi-equilibrium problems[J]. J Math Anal Appl,1998,224(1):167-181.
  • 5Lin L J, Chang T H. S-KKM theorems, saddle point and minimax inequalities [J]. Nonlinear Anal,1998,34:73-86.
  • 6Ansari Q H, Yao J C. An existence result for the generalized vector equilibrium problem [J]. Appl Math lett,1999,12(8):53-56.
  • 7Ding X P. Generalized games and generalized quasi-variational inequalities in locally convex topological vector spaces[J]. J Sichuan Normal Univ(Natural Science),2000,23(2):109-116.(丁协平. 局部凸拓扑矢量空间内的广义对
  • 8夏福全.拓扑空间中的抽象广义变分不等式和极大极小不等式[J].四川师范大学学报(自然科学版),2000,23(6):565-569. 被引量:12
  • 9夏福全.广义矢量似变分不等式及其模糊扩展[J].四川师范大学学报(自然科学版),2000,23(5):465-468. 被引量:6
  • 10Ding X P, Xia F Q. Generalized quasi-variational inequalities in locally convex topological vector spaces[J]. J Sichuan Normal Univ(Natural Science),2002,25(1):1-6.(丁协平,夏福全. 局部凸拓扑矢量空间内的广义拟变分不等式[

二级参考文献19

  • 1Ding X P.Gereralied quasi-variational inequalities in H-spaces[J].J Sichuan Norm Univ(Natu Sci),1999,22(3):254-259.
  • 2Verma R U. Some results on R-KKM mappings and R-KKM sdeetien and their application[J]. J Math Anal Appl, 1999,232:428 - 433.
  • 3Ding X P.Generalized G-KKM theorems in generalized convex spaces and their applications[J]. J Math Anal Appl,2002,266:21 - 37.
  • 4Lin L J, Park S. On some generalized quasl-equilibrium probleras[J]. J Math Anal Appl, 1998,224( 1 ) : 167 - 181.
  • 5Ding X P. New H-KKM theorems and their applieatiorm to geometric property, eoineldenee theorems, minimax inequality and maximal elements[J]. Indian J Pure Appl Math,1995,26:l - 19.
  • 6Verma R U. G-H-KKM type theorems and their applications to a new class of minimax inequalities[J]. Camputers Math Appl,1999,37:45-48.
  • 7Verma R U.Generalized G-H-convexity and minimax theorems in G-H-spaces[J]. Computers Math Appl,1999,138:13- 18.
  • 8Ding X P,Appl Math Lett,1999年,12期,99页
  • 9Ding X P,J Sichuan Norm Univ,1999年,22卷,3期,254页
  • 10Park S,J Math Anal Appl,1998年,218卷,527页

共引文献16

同被引文献82

引证文献7

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部