A new conserved quantity of mechanical systems with differential constraints
被引量:1
参考文献16
1 Zhao Y Y 1994 Acta Mech. Sin. 26 380 (in Chinese).
2 Li Z P 1993 Classical and Quantum Dynamics of Constrained Systems and Their Symmetrical Properties (Beijing: Beijing Polytechnic University Press) (in Chinese).
3 Zhao Y Y and Mei F X 1999 Symmetries and Invariants of Mechanical Systems (Beijing: Science Press) (in Chinese).
4 Mei F X, Liu D and Luo Y 1991 Advanced Analytical Mechanics (Beijing: Beijing Institute of Technology Press)(in Chinese).
5 Mei F X 1999 Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems (Beijing: Science Press) (in Chinese).
6 Mei F X 2000 ASME, Appl. Mech. Rev. 53 283.
7 Mei F X 2000 Int. J. of Non-Linear Mech. 35 229.
8 Mei F X and Zheng G H 2002 Acta Mech. Sin. 18 414.
9 Mei F X 2003 Acta Phys. Sin. 52 1048 (in Chinese).
10 Fu J L and Chen L Q 2003 Chin. Phys. 12 695.
同被引文献11
1 许学军,秦茂昌,梅凤翔.Unified symmetry of holonomic mechanical systems[J] .Chinese Physics B,2005,14(7):1287-1289. 被引量:7
2 张毅.广义经典力学系统的对称性与Mei守恒量[J] .物理学报,2005,54(7):2980-2984. 被引量:13
3 葛伟宽.一类动力学方程的Mei对称性[J] .物理学报,2007,56(1):1-4. 被引量:15
4 方健会,丁宁,王鹏.A new type of conserved quantity of Mei symmetry for Lagrange system[J] .Chinese Physics B,2007,16(4):887-890. 被引量:7
5 楼智美.一类多自由度线性耦合系统的对称性与守恒量研究[J] .物理学报,2007,56(5):2475-2478. 被引量:11
6 郑世旺,解加芳,陈文聪.A New Conserved Quantity Corresponding to Mei Symmetry of Tzénoff Equations for Nonholonomic Systems[J] .Chinese Physics Letters,2008,25(3):809-812. 被引量:4
7 蔡建乐,梅凤翔.Lagrange系统Lie点变换下的共形不变性与守恒量[J] .物理学报,2008,57(9):5369-5373. 被引量:17
8 贾利群,崔金超,张耀宇,罗绍凯.Chetaev型约束力学系统Appell方程的Lie对称性与守恒量[J] .物理学报,2009,58(1):16-21. 被引量:13
9 刘仰魁.一般完整力学系统Mei对称性的一种守恒量[J] .物理学报,2010,59(1):7-10. 被引量:6
10 FANGJian-Hui.Mei Symmetry and Lie Symmetry of the Rotational Relativistic Variable Mass System[J] .Communications in Theoretical Physics,2003,40(3X):269-272. 被引量:3
1 白洁.一种新的对称性及其与Noether对称的关系[J] .北京理工大学学报,1995,15(4):359-362.
2 梅凤翔,水小平.Lagrange系统的弱Noether对称性[J] .北京理工大学学报,2006,26(4):285-287. 被引量:4
3 罗绍凯,陈向炜,等.Theory of symmetry for a rotational relativistic Birkhoff system[J] .Chinese Physics B,2002,11(5):429-436. 被引量:3
4 梅凤翔.二阶非完整系统的Lie对称与Noether对称[J] .江西科学,1997,15(4):199-204. 被引量:8
5 张宏彬,陈立群,顾书龙,柳传长.The discrete variational principle and the first integrals of Birkhoff systems*[J] .Chinese Physics B,2007,16(3):582-587. 被引量:5
6 罗绍凯.FORM INVARIANCE AND NOETHER SYMMETRICAL CONSERVED QUANTITY OF RELATIVISTIC BIRKHOFFIAN SYSTEMS[J] .Applied Mathematics and Mechanics(English Edition),2003,24(4):468-478.
7 楼智英.The construction of conserved quantities for linearly coupled oscillators and study of symmetries about the conserved quantities[J] .Chinese Physics B,2007,16(5):1182-1185. 被引量:3
8 乔永芬,赵淑红,李仁杰,乔永芬,赵淑红,李仁杰.Form invariance and conserved quantities of Nielsen equations of relativistic variable mass nonholonomic systems[J] .Chinese Physics B,2004,13(3):292-296. 被引量:3
9 傅景礼,陈立群,谢凤萍.Form Invariance, Noether and Lie Symmetry of Non-conservative Hamiltonian Systems in Phase Space[J] .Journal of Shanghai University(English Edition),2004,8(3):252-257.
10 FANGJian-Hui.Mei Symmetry and Noether Symmetry of the Relativistic Variable Mass System[J] .Communications in Theoretical Physics,2004,41(3):349-352. 被引量:2
;