期刊文献+

夏季北冰洋无冰海域次表层暖水结构的形成机理 被引量:7

Formation Mechanism of Subsurface Warm Water in SummerIce-free Sea Area of the Arctic Ocean
下载PDF
导出
摘要 在夏季北冰洋的无冰海域,经常可以观测到次表层暖水现象,即在水深20~50m的范围内发生海水温度的极大值。建立了一个一维的热力学解析模式,用于研究夏季北冰洋次表层暖水的形成机制。模式的计算结果表明,太阳辐射作用是形成次表层暖水的关键因素。在北冰洋的开阔水域,大气吸收海洋热量的过程导致了海面温度下降,使温度极大值出现在次表层。海洋垂向湍流热扩散对次表层暖水温度有显著影响;当湍流热扩散较弱时,热扩散的范围较小,有利于形成次表层暖水。次表层暖水的位置随着时间的推移不断加深,温度不断增高。在北极,大气温度低于海面温度是普遍现象,次表层暖水经常发生。虽然当海面气温发生变化时,次表层海水温度结构会发生相应的变化,但次表层暖水结构形成之后,如果不受强烈天气过程的破坏,则会一直存在下去。按照本文的结论,随着北极气候变暖,海冰将进一步减少,次表层暖水现象还会明显增加,海洋对气候变化将有更加强烈的响应和反馈,对全球气候变化产生意义深远的影响。 The subsurface warm water has been observed frequently in the summer ice-free sea area of the Arctic Ocean, that is, a temperature maximum occurred in water depths of 20 to 50 m. In this paper, an one-dimensional analytic thermodynamic model is developed to study the formation mechanism of the subsurface warm water. It is shown from the calculated results that the solar radiation heating plays a key role in forming the subsurface warm water. In the open sea area of the Arctic Ocean in summer, the oceanic heat is absorbed by the air near sea surface to result in the drop in sea surface temperature and the subsurface temperature maximum. The vertical turbulent heat diffusion has significant influence on the subsurface warm water temperature, and the weak turbulent heat diffusion reduces the heat diffusion range to facilitate the formation of subsurface warm water so that the depth and temperature of subsurface warm water increase with the lapse of time. In the Arctic Ocean, the air temperature is often lower than the sea surface temperature, so the subsurface warm water occurs frequently. The relevant changes in surface temperature structure will take place along with the changes in surface air temperature, but the subsurface warm water structure will persist until it is destroyed by strong weather process. It is concluded from this study that the sea ice is supposed to further decrease along with the climatic warming in the arctic region, and the phenomena of subsurface warm water will remarkedly increase, in turn, the strong response and feedback of the ocean will cause significant impact on the global climatic changes.
作者 王翠 赵进平
出处 《海洋科学进展》 CAS CSCD 北大核心 2004年第2期130-137,共8页 Advances in Marine Science
基金 国家自然科学基金资助项目--北冰洋多年变化及其机理的综合研究(49876008)
关键词 北冰洋 次表层暖水 海冰边缘区 温度结构 太阳辐射 Arctic Ocean subsurface warm water marginal ice zone temperature structure solar radiation
  • 相关文献

参考文献12

  • 1Swift J H, Jones E P, Aagaard K, et al. Waters of the Makarov and Canada Basins[J]. Deep-Sea Res. , 1997, 44: 1503-1529.
  • 2Paquette R G and Bourke R H. Ocean circulation and fronts as related to ice melt-back in the Chukchi Sea[J]. J. Geophys. Res. , 1981,86(NC5) : 4215-4230.
  • 3Weingartner T J, Danielson S, Sasaki Y, et al. The Siberian coastal current: a wind- and buoyancy-forced Arctic coastal current[J]. J.Geophys. Res. ,1999, 104: 29697-29713.
  • 4Muench R D, Gunn J T, Whiteledge T E, et al. An Arctic Ocean cold core eddy[J]. J. Geophys. Res. , 2000, 105: 23997-24006.
  • 5赵进平,史久新,矫玉田.夏季北冰洋海冰边缘区海水温盐结构及其形成机理[J].海洋与湖沼,2003,34(4):375-388. 被引量:37
  • 6Shimada K, Carmack E C, Hatakeyama K, et al. Varieties of shallow temperature maximum waters in the western Canadian Basin of the Arctic Ocean[J]. Geophys. Res. Lett. ,2001, 28: 3441-3444.
  • 7赵进平,朱大勇,史久新.楚科奇海海冰周年变化特征及其主要关联因素[J].海洋科学进展,2003,21(2):123-131. 被引量:30
  • 8Kadko D. Modeling the evolution of the Arctic mixed layer during the fall 1997 Surface Heat Budget of the Arctic Ocean (SHEBA) Project using measurements of 7Be[J]. J. Geophys. Res. , 2000, 105: 3369-3378.
  • 9卞林根,高志球,陆龙骅,张雅宾,C.Roger,X.D.Zhang.北冰洋夏季开阔洋面和浮冰近地层热量平衡参数的观测估算[J].中国科学(D辑),2003,33(2):139-147. 被引量:28
  • 10Tang C L. Two-dimensional thermodynamic model for sea ice advance and retreat in the Newfoundland marginal ice zone[J]. J. Geophys. Res. , 1991, 96: 4723-4737.

二级参考文献42

  • 1冯士笮 等.海洋科学导论[M].北京:高等教育出版社,1999.397-433.
  • 2Andreas E L, Paulson C A, Williamsm R N et al, 1979. The turbulent heat flux from Arctic leads. Boundary Layer Meteorology, 17:57--91.
  • 3Bowden K F, 1983. Physical Oceanography of Coastal Waters. John Wiley & Sons, New York, NY, 302.
  • 4Dickson B, 1999. All change in the Arctic. Nature, 397:389--391.
  • 5Ebert E E, Curry J A, 1993. An intermediate one-dimensional thermodynamic sea ice model for investigating ice-atmosphere interactions. J Geophys Res, 98:10085--10109.
  • 6Flato G M, Brown R D, 1996. Variability and climate sensitivity of landfast Arctic sea ice. J Geophys Res, 101:25767--25777.
  • 7Johannessen O M, Sandven S, Budgell W P, 1994. Observation and simulation of ice tongues and vortex pairs in the marginal ice zone. In: The Polar Oceans and Their Role in Shaping the Global Environment ed. Johannessen, Mumench and Overland. AGU, Washington, 109--134.
  • 8McPhee M G, SrantonT P, Morison J H et al, 1998. Freshening of the upper ocean in the Arctic: Is perennial sea ice disappearing? Geophys Res Lett, 25:1729--1732.
  • 9Maykut G A, 1982. Large-scale heat exchange and ice production in the central Arctic. J Geophys Rea, 87(C10) : 7971--7984.
  • 10Maykut G A, McPhee M G, 1995. Solar heating of the Arctic mixed layer. J Geophys Res, 1130:24691--24703.

共引文献137

同被引文献101

引证文献7

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部