期刊文献+

基于特征车的汽车车型识别 被引量:9

Vehicle recognition based on eigen-vehicle
下载PDF
导出
摘要 车型识别是智能交通系统中的一个重要组成部分,近年来,车型识别技术已成为国内外研究热点之一。提出了一种基于特征车的车型识别方法。该方法首先对车辆图像进行预处理,然后通过K-L变换构造特征车,得到降维特征子空间,最后利用BP神经网络进行车型识别。 Vehicle recognition is an important part of intelligent transportation system. Now, the technology of vehicle recognition is becoming a hot topic all over the world. In this paper, we present a kind of method of vehicle recognition based on eigen-vehicle. Firstly, we preprocess the vehicle images. Then we build the eigen-vehicle through the use of K-L transform and gain a space with lower dimension. At last, we recognize the vehicles using neural network.
作者 陈爱斌
机构地区 中南林学院
出处 《信息技术》 2004年第5期44-45,48,共3页 Information Technology
关键词 车型识别 K—L变换 神经网络 vehicle recognition K-L transform neural network
  • 相关文献

参考文献3

二级参考文献107

  • 1[25]Kohle M, Merkl D, Kastner J. Clinical gait analysis by neural networks: Issues and experiences. In: Proc IEEE Symposium on Computer-Based Medical Systems, Maribor, Slovenia, 1997. 138-143
  • 2[26]Meyer D, Denzler J, Niemann H. Model based extraction of articulated objects in image sequences for gait analysis. In: Proc IEEE International Conference on Image Processing, Santa Barbara, California 1997. 78-81
  • 3[27]McKenna S et al. Tracking groups of people. Computer Vision and Image Understanding, 2000, 80(1):42-56
  • 4[28]Karmann K, Brandt A. Moving object recognition using an adaptive background memory. In: Cappellini V ed. Time-varying Image Processing and Moving Object Recognition. 2. Elsevier, Amsterdam, The Netherlands, 1990
  • 5[29]Kilger M. A shadow handler in a video-based real-time traffic monitoring system. In: Proc IEEE Workshop on Applications of Computer Vision, Palm Springs, CA, 1992.1060-1066
  • 6[30]Stauffer C, Grimson W. Adaptive background mixture models for real-time tracking. In: Proc IEEE Conference on Computer Vision and Pattern Recognition, Fort Collins, Colorado, 1999, 2:246-252
  • 7[31]Wren C, Azarbayejani A, Darrell T, Pentland A. Pfinder: Real-time tracking of the human body. IEEE Trans on Pattern Analysis and Machine Intelligence, 1997, 19(7):780-785
  • 8[32]Arseneau S, Cooperstock J. Real-time image segmentation for action recognition. In: Proc IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, Victoria, Canada, 1999. 86-89
  • 9[33]Sun H, Feng T, Tan T. Robust extraction of moving objects from image sequences. In: Proc the Fourth Asian Conference on Computer Vision, Taiwan, 2000.961-964
  • 10[34]Lipton A, Fujiyoshi H, Patil R. Moving target classification and tracking from real-time video. In: Proc IEEE Workshop on Applications of Computer Vision, Princeton, NJ, 1998. 8-14

共引文献358

同被引文献63

引证文献9

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部