期刊文献+

SiC陶瓷先驱体聚铝碳硅烷的合成及其陶瓷化 被引量:7

SYNTHESIS AND CERAMIZATION OF SiC CERAMIC PRECURSOR POLYALUMINOCARBOSILANE
下载PDF
导出
摘要 聚硅碳硅烷(polysilacarbosilane,PSCS)与乙酰丙酮铝[Al(AcAc)3]反应制备了含铝SiC陶瓷的先驱体聚铝碳硅烷(polyaluminocarbosilane,PACS),化学式为SiC2.01H7.66O0.13Al0.018,相对分子质量Mr=2265。PACS中主要存在如下结构:—Si(CH3)2—CH2—,—Si(CH3)·(H)—CH2—。PACS在N2气中的陶瓷化表明:600℃以下PACS是有机状态;900℃时,PACS中C—H,Si—CH3结构消失,PACS基本完成了无机化;1300℃左右PACS完全脱H,真正完成了无机化,转化为SiC陶瓷。1300℃以下陶瓷化产物的X射线衍射线很宽,产物为不定型结构。1500℃以上的陶瓷化产物为结晶度较高的SiC陶瓷。 Ceramic precursor polyaluminocarbosilane (PACS) was synthesized by the reaction of aluminum acetylacetonate (\ )with polysilacarbosilane (PSCS), which was prepared by the thermolysis and condensation of polydimethylsilane (PDMS). The empirical formula of PACS is SiC_(2.01)H_(7.66)O_(0.13)Al_(0.018), the number molecular weight (M_r) is 2 265. The chemical structure of PACS is —Si(CH_(3))_(2)—CH_(2)—,—Si(CH_(3))(H)—CH_(2)—. The conversion process of PACS to SiC ceramic was investigated by the techniques of Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction. The pyrolysis products in N_(2) gas below 600 ℃ were in organic state, C—H,Si—CH_(3) bonds in PACS disappeared at 900 ℃ and the organic PACS transformed into a inorganic state. By 1 300 ℃ this transition was essentially completed and an amorphous residue was obtained. Over 1 500 ℃, the pyrolysis products were the microcrystalline of silicon carbide.
出处 《硅酸盐学报》 EI CAS CSCD 北大核心 2004年第4期494-496,501,共4页 Journal of The Chinese Ceramic Society
关键词 聚铝碳硅烷 合成 陶瓷化 碳化硅陶瓷 polyaluminocarbosilane synthesis ceramization silicon carbide ceramic
  • 相关文献

参考文献9

  • 1LAINE R M, BABONNEAU F. Preceramic polymer routes to silicon carbide [J]. Chem Mater, 1993, 5: 260-279.
  • 2YAJIMA S, HAYASHI J, OKAMURA K. Pyrolysis of a polyborodiphenylsiloxane[J]. Nature, 1977, 266: 521-522.
  • 3BIROT M, PILLOT J P, DUNOGUES J. Comprehensive chemistry of polycarbosilane,polysilazane,and polycarbosilazane as precursors of ceramic [J]. Chem Rev, 1995, 95(5): 1 443-1 477.
  • 4YAJIMA S, HASEGAWA X, HAYASHI J, et al. Synthesis of continuous SiC fibers with high tensile strength and modulus [J]. J Mater Sci, 1978,13: 2 569-2 576.
  • 5CHOLLON G, ALDACOURROU B, CAPES L,et al. Thermal behaviour of a polytitanocarbosilane derived fibre with a low oxygen content: the tyranno loxe fibre [J]. J Mater Sci, 1998, 33: 901-911.
  • 6ISHIKAWA T, KOHTOK U, KUMAGAWA K. Production mechanism of polyzirconocarbosilane using zirconium (IV) acetylacetonate and its conversion of the polymer into inorganic materials [J]. J Mater Sci, 1998, 33: 161-166.
  • 7CAO F, LI X D, PENG P, et al. Structural evolution and associated properties on conversion from Si-C-O-Al ceramic fibers to Si-C-Al fibers by sintering [J]. J Mater Chem ,2002,12: 606-610.
  • 8余煜玺,李效东,曹峰,邢欣,冯春祥.先驱体法制备含异质元素SiC陶瓷纤维的现状与进展[J].硅酸盐学报,2003,31(4):371-375. 被引量:25
  • 9ISHIKAWA T, KOHTOKU Y, KUMAGAWA K, et al. High strength alkali resistant sintered SiC fibre stable to 2 200 ℃ [J]. Nature, 1998, 391: 773-774.

二级参考文献26

  • 1LAINE R M, BABONNEAU F. Preceramic polymer routes to silicon carbide [J]. Chem Mater, 1993, 5: 260-279.
  • 2BIROT M, PILLOT J P, DUNOGUES J. Comprehensive chemistry of polycarbosilane, polysilazane, and polycarbosilazane as precursors of ceramic [J]. Chem Rev, 1995, 95(5): 1 443-1 477.
  • 3MAZDIYASN K S. Fiber Reinforced Composites: Materials, Processing and Technology[M]. Park Ridge, NJ: Noyes Publication, 1990.199-243.
  • 4YAJIMA S, HASEGAWA X, HAYASHI J, et al. Synthesis of continuous SiC fibers with high tensile strength and modulus [J]. J Mater Sci, 1978,13: 2 569-2 576.
  • 5YAJIMA S, HAYSHI J, OMORI M, et al. Development of a SiC fibre with high tensile strength [J]. Nature, 1976, 261: 683-685.
  • 6BUNSELL A R, BERGER M H. Fine diameter ceramic fibres [J]. J Eur Ceram Soc, 2000,20: 2 249-2 260.
  • 7SIMON G, BUNSELL A R. Creep behaviour and structural characterisation at high temperatures of Nicalon silicon carbide fibre [J]. J Mater Sci, 1984,19: 3 658-3 670.
  • 8BERGER M H, HOCHET N, BUNSELL A R. Microstructure and thermo-mechanical stability of a low oxygen Nicalon fibre [J]. J Microsc, 1995,177: 230-241.
  • 9TAKEDA M, SAKAMOTO J I,YOSHIKAZU I, et al. Thermal stability of the low-oxygen-content silicon carbide fiber, Hi-Nicalon TM [J]. Compos Sci Technol, 1999, 59: 813-819.
  • 10TAKEDA M, URANO A, SAKAMOTO J I, et al. Microstructure and oxidative degradation behavior of silicon carbide fiber Hi-Nicalon Type S [J]. J Nucl Mater, 1998, 263: 1 594-1 599.

共引文献25

同被引文献118

引证文献7

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部