期刊文献+

改进的EM算法及其在防洪决策中应用 被引量:1

An improved EM algorithm and its application to flood decision-supporting system
下载PDF
导出
摘要 在给定贝叶斯网络结构情况下,利用EM算法及改进的EM算法对防洪决策贝叶斯网络进行参数学习,改进的EM算法通过定义祖先集及计算该祖先集中变量的条件概率,降低期望计算的计算量.应用两种算法对防洪决策贝叶斯网络进行了性能比较,结果表明,改进的EM算法用于贝叶斯网络参数学习和决策支持具有较高的计算速度和精确度. The basic principles of Bayesian probability and Bayesian networks are described. The automated creation of Bayesian networks can be separated into two tasks: structure learning, which consists of creating the structure of the Bayesian networks from the collected data; and parameter learning, which consists of calculating the numerical parameters for a given structure. The parameter learning of the flood decision supporting-system is focused on. The EM algorithm and an improved EM algorithm are discussed and applied to the flood decision Bayesian networks to compare their performance. The results indicate that the improved EM algorithm is more precise than traditional EM algorithm. It is shown that the improved EM algorithm can be used in the parameter learning of Bayesian networks and it is also a good way in decision-supporting system.
出处 《大连理工大学学报》 EI CAS CSCD 北大核心 2004年第3期454-458,共5页 Journal of Dalian University of Technology
关键词 EM算法 防洪 贝叶斯网络 祖先集 参数学习 决策支持系统 Bayesian networks parameter learning EM algorithm decision-supporting system
  • 相关文献

参考文献8

  • 1HECKEMAN D. Bayesian networks for data mining [J]. Data Mining and Knowledge Discovery,1997,:-119.
  • 2HECKEMAN D,GEIGER D,CHICKERING D. Learning Bayesian networks:he combination of knowledge and statistical data [J]. Mach Learning,1995,20(3):97-243.
  • 3HECKEMAN D,SHACHTER R. Decision- theoretic foundations for causal reasoning [J]. J of Artif Intell Res,1995,:5-430.
  • 4ZHANG N L. Irrelevance and parameter learning in Bayesian networks [J]. Artif Intell,1996,8:9-372.
  • 5PAN He-ping. Learning Bayesian networks I-A theory based on MAP-MDL criteria [A]. 5th International Conference on Information Fusion [C]. Anapdis:s n],2002. 770-776.
  • 6LAURITZEN S L. The EM algorithm for graphical association models with missing data [J]. Comput Stat Data Anal,1995,9:1-201.
  • 7LI Gang. Graphical model for knowledge discovery [D]. Beijing:nstitute of Software,Chinese Academy of Sciences,2001.
  • 8ZHANG Shao-zhong,YANG Nan-hai,WANG Xiu-kun. Construction and application of Bayesian networks in flood decision-supporting system [A]. Proceedings of the First International Conference on Machine Learning and Cybernetics,IEEE [C]. Beijing:s n],2002. 718-7

同被引文献110

引证文献1

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部