摘要
讨论了一维非线性Fredholm积分方程迭代Galerkin方法,证明了迭代Galerkin解的误差可展开为h的偶次幂,且首项为h2p。从而可进行Richardson外推,提高数值解的精度。同时我们还给出了数值例子,数值计算结果与理论预测相符。
This paper discusses the asymptotic error expansion of the iterated Galerkin solution for one dimensional nonlinear Fredholm integral equation of the second kind.It proves that the iterated Galerkin solution admits an error expansion in even powers of the step sized h ,beginning with a term h .Thus Richardson's extrapolation can be performed on the solution,and this will greatly increase the accuracy of the numerical solution.Some numerical results are given in the paper.
出处
《华南理工大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
1997年第6期119-126,共8页
Journal of South China University of Technology(Natural Science Edition)
基金
国家自然科学基金
广东省自然科学基金