摘要
进行了各种数值方法的实验研究 ,最终设计了leapfrog型差分格式和基于小模板的Pad逼近格式 ,求解了KdV型的双向孤立波二元方程组Ut +F(U) x =cUxxx .并分别运用了滤波和隐式求解的技巧处理非线性色散方程组差分格式不稳定的问题 。
Unlike KdV equation, numerical methods for solving Bidirectional-soliton: U t+F(U) x=cU xxx and little work has been done on this problem. After numerical simulation by several methods, it is found that the leepfrog differential scheme with small-stencil pade method performs better. A filter and an implicit scheme are adopted to solve the instability problem of non-linear dispersive equation and the numerical results are satisfactory.
基金
国家自然科学基金资助项目 (No .10 371118)
中国科技大学火灾科学国家重点实验室创新基金资助项目