期刊文献+

基于互关联后继树的Web日志挖掘技术 被引量:2

WEB LOG MINING BASED ON INTER-RELATED SUFFIX TREE
下载PDF
导出
摘要 本文将互关联后继树 (Inter RelatedSuffixTree ,IRST)模型应用于Web日志事务挖掘 ,构造Web日志事务集的互关联后继树结构 ,从中挖掘频繁路径。 This paper proposes a new effective prototype of transaction mining,Inter-Related Suffix Tree(IRST).By constructing IRST of Web log transactions,frequent paths can be mined.Experiences show that IRST has better performance.
出处 《计算机应用与软件》 CSCD 北大核心 2004年第5期9-11,112,共4页 Computer Applications and Software
基金 国家自然科学基金项目 (编号 :60 1 730 2 7)
关键词 INTERNET WEB 日志挖掘 互关联后继树 计算机网络 网站 Web log mining Web log transaction Frequent path Inter-related Suffix tree(IRST)
  • 相关文献

参考文献8

  • 1B.Mobasher,N.Jain,E.H.Han,and J.Srivastava,Web mining:Pattern discovery from world wide web transactions.Technical Report TR-96050,Department of Computer Science,University of Minnesota,Minneapolis,1996.
  • 2Cooley,R.,Tan,P.-N., and Srivastava,J.,Websift:the Web site information filter system.In Proceedings of the 1999 KDD Workshop on Web Mining,San Diego,CA.Springer-Verlag,1999.
  • 3Myra Spiliopoulou and Lukas Faulstich,C.WUM:A Tool for Web Utilization Analysis.In EDBT Workshop WebDB′98,Valencia,Spain,Mar.1998.
  • 4Rakesh Agrawal,Tomasz Imielinski,and Arun Swami,Mining association rules between sets of items in large database.In Proc.of the ACM SIGMOD Conference on Management of Data,pages 207-216,Washington,D.C.,May 1993.
  • 5J.Han,J.Pei,and Y.Yin,Mining frequent patterns without candidate generation.Technical Report TR-99-12,Computing Science Technical Report,Simon Fraser University,October 1999.
  • 6Han.J.,and Fu.Y.,Discovery of multiple-level association rules from large databases.In Proc.of the 21st Int′l Conference on Very Large Databases.1995.
  • 7Rakesh Agrawal and Ramakrishnan Srikant.Mining Sequential Patterns.In Proc.of the 11th Int′l Conference on Data Engineering,Taipei,Taiwan,March 1995.
  • 8.[EB/OL].http:∥www.webtrends.com.,.

同被引文献12

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部