期刊文献+

多孔介质非饱和导水率预测的分形模型 被引量:10

Fractal model for predicting of unsaturated hydraulic conductivity of porous media
下载PDF
导出
摘要 多孔介质非饱和导水率是地下水污染预测与评价的重要参数。根据分形几何的基本原理和方法,推导出了与Campbell经验公式在形式上完全一致的多孔介质非饱和导水率的预测公式。公式中的幂指数为介质孔隙分维和随机行走分维的函数,分别体现了多孔介质的静态性质与动态性质对其中水分运动的影响,但静态性质的影响是主要的,即导水率主要受多孔介质的结构控制。根据文献中报道的大量数据,利用笔者推导的预测公式计算得到的幂指数的统计值与试验测定的幂指数的统计值基本一致,说明推导的理论公式预测多孔介质非饱和导水率是较为可靠的。 The unsaturated hydraulic conductivity is a key parameter of porous media applied to groundwater pollution prediction and assessment. The fractal approach is employed in derivation of a power law equation consistent with the empirical Campbell's Law to predict unsaturated conductivity of porous media. The power exponent is a function of the pore-volume fractal dimension and random walk dimension, which respectively characterize the static and dynamic properties of the media, but the contribution of the static property to water movement is dominant. The analytical comparison of the reported experimental data of fractal dimensions with the corresponding power exponents indicates that the derived power law equation is valid for predicting the unsaturated conductivity of porous media.
出处 《水科学进展》 EI CAS CSCD 北大核心 2004年第3期269-275,共7页 Advances in Water Science
基金 清华大学基础研究基金资助项目(JC2003010)
关键词 多孔介质 非饱和导水率 分形模型 carIlpbeu公式 地下水污染 porous media unsaturated conductivity fractal model Campbell's Law
  • 相关文献

参考文献22

  • 1Gimenez D,Perfect E,Rawls W J,et al.Fractal models for predicting soil hydraulic properties:a review[J].Engineering Geology,1997,48:161-183.
  • 2Campbell G S.A simple method for determining unsaturated conductivity from moisture retention data[J].Soil Science,1974,117(6):311-314.
  • 3Tyler S W,Wheatcraft S W.Fractal process in soil water retention[J].Water Resour Res,1990,26:1 047-1 054.
  • 4Perrier E,Rieu M,Sposito G,et al.Models of the water retention curve for soils with a fractal pore size distribution[J].Water Resour Res,1996,32:3 025-3 031.
  • 5Rieu M,Sposito G.Fractal fragmentation,sol porosity and soil water properties:I.Theory[J].Soil Sci Soc Am J,1991,55:1 231-1 238.
  • 6Perfect E.Estimating soil mass fractal dimensions from water retention curves[J].Geoderma,1999,88:221-231.
  • 7Crawford J W.The relationship between structure and the hydraulic conductivity of soil[J].Eur J Soil Sci,1994,45:493-501.
  • 8de Gennes P G.Partial filling of a fractal structure by a wetting fluid[A].Adler D,Frietzsche E,OvshinsKy S R.Physics of Disordered Materials[C].New YorK:Plenum Press,1985.227-241.
  • 9Toledo P G,Novy R A,Davis H T,et al.Hydraulic conductivity of porous media at low water content[J].Soil Sci Soc Am J,1990,54:673-679.
  • 10Havlin S,Ben-AvRahan D.Diffusion in disordered media[J].Adv Phys,1987,36:695-798.

同被引文献138

引证文献10

二级引证文献148

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部