期刊文献+

LZ50钢概率疲劳S-N曲线外推新方法 被引量:17

Reasonable Extrapolation of the Commonly Probabilistic Fatigue S-N Curves into the Long Life Regime for LZ50 Axle Steel
下载PDF
导出
摘要 基于Basquin关系,提出了将中短寿命概率疲劳S N曲线合理外推到长寿命范围的疲劳极限参数法。要求外推曲线依概率平滑通过相应的概率疲劳极限点。通过对LZ50车轴钢试验数据分析,与现有直接法和2m-1指数法比较表明,本文提出的外推方法是合理的;无疲劳极限试验数据时,可采用2m-1指数法,不宜采用安全裕度过大的直接法。根据本文方法建立了LZ50钢概率疲劳外推曲线。 A so-called probabilistic fatigue limit parameter method is proposed for the extrapolation of commonly probabilistic fatigue S-N curves in the mid-short life regime into the long life regime. The extrapolated curves are required to pass through the fatigue limits on a concurrently probabilistic sense by the Basquin equation. The extrapolated effects of the method fitting the test data of LZ50 axle steel are compared with the existent 2m-1 exponent method and the direct method. It reveals that the present method works appropriately on the extrapolation, the 2m-1 exponent method approximately, and the direct method poorly. Therefore, the probabilistic fatigue S-N curves of LZ50 axle steel including the mid-short life regime and the long life regime are finally suggested by the present method.
出处 《铁道学报》 EI CAS CSCD 北大核心 2004年第3期20-25,共6页 Journal of the China Railway Society
基金 全国优秀博士学位论文作者专项资金资助项目
关键词 疲劳 S-N关系 长寿命范围 概率模型 LZ50钢 fatigue S-N relation long life regime probabilistic analysis LZ50 steel
  • 相关文献

参考文献7

  • 1赵永翔,高庆,王金诺.估计三种常用应力-寿命模型概率设计S-N曲线的统一方法[J].核动力工程,2001,22(1):42-52. 被引量:37
  • 2Stanzle S E, Tschegy E K, Mayer H. Lifetime measurements for random loading in very high cycle fatigue range[J]. Int. J. Fatigue, 1986, 8: 195-200.
  • 3Lawson L, Chen E Y, Meshii M. Near-threshold fatigue:a review[J]. Int. J. Fatigue, 1999, 21(Suppl): 15-34.
  • 4Murakami Y, Nomoto T, Ueda T. Factors influencing the mechanism of superlong fatigue failure in steels[J]. Fatigue Fract. Eng. Mater. Struct., 1999, 22(7): 581-590.
  • 5TB/T2945-1999.铁道车轴用LZ50钢车轴及钢坯技术条件[S].[S].北京:中华人民共和国铁道部,1999..
  • 6赵永翔,黄郁仲,高庆.铁道车辆LZ50车轴钢的概率机械性能[J].交通运输工程学报,2003,3(2):11-17. 被引量:20
  • 7Basquin O H. The exponential law of endurance tests[J].Proceedings of ASTM, 1919, (10): 625-630.

二级参考文献12

共引文献51

同被引文献231

引证文献17

二级引证文献152

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部