摘要
By using the Reynolds Stress Closure Model (RSM), turbulentCounter-Gradient-Transport (CGT) phenomenon was numerically investigated in asymmetric flow with ajet, and the computational results were compared with experimental data. The computational resultsshow that the negative turbulent energy production only appears at some certain stations in CGTregion, this fact indicates that the CGT phenomenon exists more widely than the negative turbulentenergy production; while the CGT region exists all along, it gradually shrinks in the favorablepressure gradient zone until the position of the wing central part is reached, where it vanishes,but it appears in the adverse pressure gradient region; in addition, the location in the flow whereuv = 0 switched sides, relative to where partial deriv U/partial deriv y = 0, from favorablepressure gradient to adverse pressure gradient. The pressure gradient takes an important effect onthe region of negative turbulent energy production and CGT.
By using the Reynolds Stress Closure Model (RSM), turbulentCounter-Gradient-Transport (CGT) phenomenon was numerically investigated in asymmetric flow with ajet, and the computational results were compared with experimental data. The computational resultsshow that the negative turbulent energy production only appears at some certain stations in CGTregion, this fact indicates that the CGT phenomenon exists more widely than the negative turbulentenergy production; while the CGT region exists all along, it gradually shrinks in the favorablepressure gradient zone until the position of the wing central part is reached, where it vanishes,but it appears in the adverse pressure gradient region; in addition, the location in the flow whereuv = 0 switched sides, relative to where partial deriv U/partial deriv y = 0, from favorablepressure gradient to adverse pressure gradient. The pressure gradient takes an important effect onthe region of negative turbulent energy production and CGT.
基金
ProjectsupportedbytheNationalNaturalScienceFoundationofChina(GrantNo :10 2 72 0 71)andtheScientificResearchFundationShanghaiMunicipalCommissionandTechnology .(GrantNo :0 3JC14 0 32 )