摘要
定义了纯整超rpp半群,并给出了幂等元集子半群属于由含有不超过3个变量的恒等式决定的带簇的纯整超rpp半群的结构半格分解和标准表示。
出处
《中国科学(A辑)》
CSCD
北大核心
2004年第3期304-314,共11页
Science in China(Series A)
基金
国家自然科学基金(批准号:10071068)
湖南省教育厅青年基金
UGC基金(香港).
参考文献14
-
1Petrich M.Lectures in Semigroups.New York:Pitman,1976
-
2Petrich M,Reilly N.Completely Regular Semigroups.New York:John Wiley & Sons,1998
-
3Fountain J B.Abundant semigroups.Proc London Math Soc,1982,44:103-129
-
4Guo Y Q,Shum K P,Zhu P Y.On quasi-C-semigroups and some special subclasses.Algebra Colloquium,1999,6:105-120
-
5Fountain J B.Right pp monoids with central idempotents.Semigroup Forum,1977,13:229-237
-
6Kong X Z,Shum K P.On the structure of regular crypto semigroups.Comm Algebre,2001,29(6):2461-2479
-
7Guo Y Q,Shum K P,Zhu P Y.The structure of left C-rpp semigroups.Semigroup Forum,1995,50:9-23
-
8Guo X J,Shum K P,Guo Y Q.Perfect rpp semigroups.Comm Algebra,2001,29 (6):2447-2459
-
9Lawson M.Semigroups and ordered categories,I.The reduced case.J Algebra,1991,141 (2):422-462
-
10郭聿琦,任学明,岑嘉评.左C─半群的又一结构[J].数学进展,1995,24(1):39-43. 被引量:20
二级参考文献16
-
1郭聿琦,任学明,岑嘉评.左C─半群的又一结构[J].数学进展,1995,24(1):39-43. 被引量:20
-
2[1]Yamada M.Construction of inverse semigroups.Mem Fac Lit Sci Shimane Univ Natur Sci,1971,4:1~9
-
3[2]Warne R J.On the structure of semigroups which are unions of groups.Trans Amer Math Soc,1973,186:385~401
-
4[3]Petrich M.The structure of completely regular semigroups.Trans Amer Math Soc,1974,189:211~236
-
5[4]Clifford A H,Petrich M.Some classes of completely regular semigroups.J Algebra,1977,46:462~480
-
6[5]Petrich M.A structure theorem for completely regular semigroups.Proc Amer Math Soc,1987,99(4):617~622
-
7[6]Fountain J B.Abundant semigroups.Proc Lond Math Soc,1982,44(3):103~129
-
8[7]Howie J M.An Introduction to Semigroup Theory.London:Academic Press,01976
-
9[8]Fountain J B.Adequate semigroups.Proc Edinburgh Math Soc,1979,22:113~125
-
10[9]Ren X M,Shum K P.On generalized orthogroups.Communications in Algebra,2001,29(6):2341~2361
共引文献55
-
1SHUM K. P.,SEN M. K..LR-normal orthogroups[J].Science China Mathematics,2006,49(3):330-341.
-
2杜爱花,刘云.弱LR带(英文)[J].山东科学,2005,18(2):1-5. 被引量:1
-
3程涛.关于半群的平移壳的两个结论[J].枣庄学院学报,2005,22(2):14-15.
-
4郭聿琦.弱左C-半群的结构[J].科学通报,1995,40(19):1744-1747. 被引量:11
-
5高燕玲,李恩凤.关于左∧半群[J].青海师范大学学报(自然科学版),1995,11(1):9-12. 被引量:1
-
6李刚,李师正,张玉芬.稠密、自反E-半群的局部化和最大幂等分离同余[J].山东师范大学学报(自然科学版),1995,10(4):361-364.
-
7郭聿琦,任学明,岑嘉评.左C─半群的又一结构[J].数学进展,1995,24(1):39-43. 被引量:20
-
8郭小江,吴爱军.关于左C-rpp半群的一点注记[J].江西师范大学学报(自然科学版),2005,29(4):283-286. 被引量:2
-
9伊保林,周淑云.正则半群的拟C同余[J].青海师范大学学报(自然科学版),2005,21(4):13-16.
-
10周媛兰,郭聿琦,王正攀.纯整环并半环上的同余对[J].中山大学学报(自然科学版),2005,44(6):8-10. 被引量:1
同被引文献40
-
1Howie J M. An Introduction to Semigroup Theory. London: Academic Press, 1976.
-
2Petrich M. Lectures in Semigroups. London: Wiley, 1977.
-
3EI-Qallali A, Fountain J B. Quasi-adequate semigroups. Proc Royal Soc Edinburgh, 91A: 91-99 (1981).
-
4E1-Qallali A, Fountain J B, Gould V. Fundamental representations for classes of semigroups containing a band of idempotents. Comm Algebra, 36(8): 2998-3031 (2008).
-
5Gomes G M S, Gould V. Fundamental semigroups having a band of idempotents. Semigroup Forum, 77: 279-299 (2008).
-
6Hall T E. Orthodox semigroups. Pacific J Math, 39:677-686 (1971).
-
7He Y, Guo Y Q, Shum K P. Standard representations of orthodox semigroups. Comm Algebra, 33:745-761 (2005).
-
8Chen Y Q, He Y, Shum K P. Projectively condensed semigroups, generalized completely regular semigroups and projective orthomonoids. Acta Math Hungar, 119(3): 281-305 (2008).
-
9Lawson M V. Rees matrix semigroups. Proc Edinburgh Math Soc, 33:23-37 (1990).
-
10de Barros C M. Sur ies categories ordonees regulieres. Cah Topol Geom Differ, 11:23-55 (1969).
引证文献4
-
1杨棣,何勇.满足左正则性条件的IC富足半群[J].湘潭大学自然科学学报,2007,29(1):1-4.
-
2何勇,岑嘉评,王正攀.良B-拟Ehresmann半群[J].中国科学(A辑),2009,39(12):1390-1402.
-
3王春茹,喻秉钧.强右C-wlpp半群[J].四川师范大学学报(自然科学版),2015,38(2):164-168. 被引量:1
-
4李春华,徐保根,王广富,范自柱,黄华伟.关于rpp半群的fuzzy同余注记[J].数学的实践与认识,2016,46(7):201-206. 被引量:1
-
1何勇,岑嘉评,王正攀.良B-拟Ehresmann半群[J].中国科学(A辑),2009,39(12):1390-1402.
-
2彭丰富,陈小松.Grbner基优化算法[J].武汉科技大学学报,2003,26(3):320-322.
-
3王清印,吕瑞华.区间数的标准表示及其四则运算法则与泛灰数的内在联系[J].数学的实践与认识,2005,35(6):216-222. 被引量:7
-
4郑水草.N指标d维广义α-stable过程的标准表示[J].集美大学学报(自然科学版),2001,6(4):369-374. 被引量:1
-
5刘丽君,李俊锋,刘钊南.左逆半群的构造(英文)[J].湘潭师范学院学报(自然科学版),2003,25(4):10-13.
-
6蒋立宁,王正栋.A类量子群和Hecke代数的Schur-Weyl对偶(英文)[J].数学进展,2000,29(5):444-456.
-
7Xiao Qian WANG,Shi Hong CHENG.General Regular Variation of n-th Order and the 2nd Order Edgeworth Expansion of the Extreme Value Distribution (Ⅰ)[J].Acta Mathematica Sinica,English Series,2005,21(5):1121-1130. 被引量:3