期刊文献+

纯整超rpp半群的构造 被引量:4

原文传递
导出
摘要 定义了纯整超rpp半群,并给出了幂等元集子半群属于由含有不超过3个变量的恒等式决定的带簇的纯整超rpp半群的结构半格分解和标准表示。
出处 《中国科学(A辑)》 CSCD 北大核心 2004年第3期304-314,共11页 Science in China(Series A)
基金 国家自然科学基金(批准号:10071068) 湖南省教育厅青年基金 UGC基金(香港).
  • 相关文献

参考文献14

  • 1Petrich M.Lectures in Semigroups.New York:Pitman,1976
  • 2Petrich M,Reilly N.Completely Regular Semigroups.New York:John Wiley & Sons,1998
  • 3Fountain J B.Abundant semigroups.Proc London Math Soc,1982,44:103-129
  • 4Guo Y Q,Shum K P,Zhu P Y.On quasi-C-semigroups and some special subclasses.Algebra Colloquium,1999,6:105-120
  • 5Fountain J B.Right pp monoids with central idempotents.Semigroup Forum,1977,13:229-237
  • 6Kong X Z,Shum K P.On the structure of regular crypto semigroups.Comm Algebre,2001,29(6):2461-2479
  • 7Guo Y Q,Shum K P,Zhu P Y.The structure of left C-rpp semigroups.Semigroup Forum,1995,50:9-23
  • 8Guo X J,Shum K P,Guo Y Q.Perfect rpp semigroups.Comm Algebra,2001,29 (6):2447-2459
  • 9Lawson M.Semigroups and ordered categories,I.The reduced case.J Algebra,1991,141 (2):422-462
  • 10郭聿琦,任学明,岑嘉评.左C─半群的又一结构[J].数学进展,1995,24(1):39-43. 被引量:20

二级参考文献16

  • 1郭聿琦,任学明,岑嘉评.左C─半群的又一结构[J].数学进展,1995,24(1):39-43. 被引量:20
  • 2[1]Yamada M.Construction of inverse semigroups.Mem Fac Lit Sci Shimane Univ Natur Sci,1971,4:1~9
  • 3[2]Warne R J.On the structure of semigroups which are unions of groups.Trans Amer Math Soc,1973,186:385~401
  • 4[3]Petrich M.The structure of completely regular semigroups.Trans Amer Math Soc,1974,189:211~236
  • 5[4]Clifford A H,Petrich M.Some classes of completely regular semigroups.J Algebra,1977,46:462~480
  • 6[5]Petrich M.A structure theorem for completely regular semigroups.Proc Amer Math Soc,1987,99(4):617~622
  • 7[6]Fountain J B.Abundant semigroups.Proc Lond Math Soc,1982,44(3):103~129
  • 8[7]Howie J M.An Introduction to Semigroup Theory.London:Academic Press,01976
  • 9[8]Fountain J B.Adequate semigroups.Proc Edinburgh Math Soc,1979,22:113~125
  • 10[9]Ren X M,Shum K P.On generalized orthogroups.Communications in Algebra,2001,29(6):2341~2361

共引文献55

同被引文献40

  • 1Howie J M. An Introduction to Semigroup Theory. London: Academic Press, 1976.
  • 2Petrich M. Lectures in Semigroups. London: Wiley, 1977.
  • 3EI-Qallali A, Fountain J B. Quasi-adequate semigroups. Proc Royal Soc Edinburgh, 91A: 91-99 (1981).
  • 4E1-Qallali A, Fountain J B, Gould V. Fundamental representations for classes of semigroups containing a band of idempotents. Comm Algebra, 36(8): 2998-3031 (2008).
  • 5Gomes G M S, Gould V. Fundamental semigroups having a band of idempotents. Semigroup Forum, 77: 279-299 (2008).
  • 6Hall T E. Orthodox semigroups. Pacific J Math, 39:677-686 (1971).
  • 7He Y, Guo Y Q, Shum K P. Standard representations of orthodox semigroups. Comm Algebra, 33:745-761 (2005).
  • 8Chen Y Q, He Y, Shum K P. Projectively condensed semigroups, generalized completely regular semigroups and projective orthomonoids. Acta Math Hungar, 119(3): 281-305 (2008).
  • 9Lawson M V. Rees matrix semigroups. Proc Edinburgh Math Soc, 33:23-37 (1990).
  • 10de Barros C M. Sur ies categories ordonees regulieres. Cah Topol Geom Differ, 11:23-55 (1969).

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部