摘要
文献[1]应用Lwner与Hankel矩阵解法得出一般有理插值问题的McMillan次数小于插值点个数N(含重数)的所有真有理解及其参数表示.沿用[1]中记号与术语,我们在本文中继续考虑这个插值问题并得到包括真与非真有理解在内的所有解及其参数表示(详情见[2]),因而完全解决该问题。给出一般有理插值问题{(x_i,Y_(ik)),i=1,…,t;k=0,…τ_i-1},其Hankel向量记为b∈Q^(N-J),N=sum from i=1 to tτ_i.设n_1,n_2为b的特征度;(p(λ),q(λ))为典型特征多项式对.令α(λ)=p(λ)ω(λ)
Following a former paper of the first author joint with Zhao Bin the pres- ent report deals with the completesolution to the general rational interpolation problem in scalar case. A parametrization on all solutions is given in terms of the linear fractional representation formulas based on the so-called Hankel vector theory setting.
出处
《北京师范大学学报(自然科学版)》
CAS
CSCD
1993年第4期465-466,共2页
Journal of Beijing Normal University(Natural Science)
基金
国家教委博士点基金
关键词
有理插值问题
Hankel向量
特征度
rational interpolation problem
Hankel vector
characteristic degrees
pair of canonical characteristic polynomials
rational interpolant