摘要
对于一类目标函数中含范数‖Bx‖p的非可微广义分式规划,给出了一个新的非完全Lagrange函数,并利用已有的最优性必要条件,在一类广义(F,α,ρ,d)-凸性的条件下,证明了鞍点最优性准则。
For a class of nondifferentiable generalized fractional programming problems with the norm \$‖Bx‖\-p\$ in the objective function involving, a new incomplete Lagrange function is given, and the saddle point optimal criteria are proven by using the existing necessary optimality conditions, under the assumptions of the class of generalized (\$F,α,ρ,d\$)-convexity.
出处
《浙江工业大学学报》
CAS
2004年第3期358-362,共5页
Journal of Zhejiang University of Technology
基金
浙江省自然科学基金资助项目(602095)
关键词
非可微广义分式规划
非完全Lagrange函数
鞍点
广义(F
α
ρ
d)-凸性
nondifferentiable generalized fractional programming
incomplete Lagrange function
saddle point
generalized (\$F,α,ρ,d\$)-convexity