期刊文献+

一类非可微广义分式规划的非完全Lagrange函数与鞍点最优性准则

Incomplete Lagrange function and saddle point optimality criteria fora class of nondifferentiable generalized fractional programming
下载PDF
导出
摘要 对于一类目标函数中含范数‖Bx‖p的非可微广义分式规划,给出了一个新的非完全Lagrange函数,并利用已有的最优性必要条件,在一类广义(F,α,ρ,d)-凸性的条件下,证明了鞍点最优性准则。 For a class of nondifferentiable generalized fractional programming problems with the norm \$‖Bx‖\-p\$ in the objective function involving, a new incomplete Lagrange function is given, and the saddle point optimal criteria are proven by using the existing necessary optimality conditions, under the assumptions of the class of generalized (\$F,α,ρ,d\$)-convexity.
作者 罗和治
出处 《浙江工业大学学报》 CAS 2004年第3期358-362,共5页 Journal of Zhejiang University of Technology
基金 浙江省自然科学基金资助项目(602095)
关键词 非可微广义分式规划 非完全Lagrange函数 鞍点 广义(F α ρ d)-凸性 nondifferentiable generalized fractional programming incomplete Lagrange function saddle point generalized (\$F,α,ρ,d\$)-convexity
  • 相关文献

参考文献9

  • 1罗和治.一类非可微广义分式规划的最优性必要条件[J].浙江师大学报(自然科学版),2001,24(3):239-242. 被引量:10
  • 2Lai H C,Liu J C,Tanaka K.Necessary and sufficient conditions for minimax fractional programming[J].J Math Anal Appl,1999,230:311-328.
  • 3罗和治,吴惠仙,朱艺华.一类非可微广义分式规划的混合型对偶[J].浙江工业大学学报,2003,31(2):182-186. 被引量:2
  • 4Preda V.On efficiency and duality for multiobjective programs[J].J Math Anal Appl,1992,166:365-377.
  • 5Liang Zhi-an,Shi Zhen-wei.Optimality conditions and duality for a minimax fractional programming with generalized convexity[J].J Math Anal Appl,2003,277:474-488.
  • 6Bector C R,Chandra S.On incomplete Lagrange function and saddle point optimality criteria in mathematical programming[J].J Math Anal Appl,2000,251:2-12.
  • 7Gomez R O,Lizana A R.Invex functions and generalized convexity in multiobjective programming[J].J Optim Theory Appl,1998,98:651-661.
  • 8Xu Z K.Saddle-point type optimality criteria for generalized fractional programming[J].J Optim Theroy Appl,1988,57:189-196.
  • 9Bector C R.Duality in nonlinear fractional programming[J].Z Oper Res,1973,17:183-193.

二级参考文献2

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部