摘要
本文研究由微分算式D^4-DpD+q生成的两个四阶微分算子L_i(i=1,2)的积L_2L_1的自伴性,并在常型和奇型情形下,分别获得了两个四阶微分算子积自伴的充要条件,同时证明了若L_1和L_2自伴,则L=L_2L_1自伴的充要条件是L_1=L_2。
In this paper, we study the self-adjointness of product L_2L_1 of two 4th-order
differential operators L_i(i=1, 2) generated by the diffrential expression D^4--DpD+q and
obtain a necessary and sufficient condition for the self-adjoininess of product of two 4th-order
differential operators, respectively, when both I=[a, b]and [0, ∞]. We prove that if both L_1
and L_2 are self-adjoint, then L=L_2L_1 is self-adjoint if and only if L_1=L_2.
出处
《数学进展》
CSCD
北大核心
2004年第3期291-302,共12页
Advances in Mathematics(China)
关键词
自伴算子
两个微分算子积
边条件
self-adjoint operator
product of two differential operators
boundary conditions