摘要
证明了 :在自反 Banach空间$X$中 ,每个闭子空间 L,都存在 X到 L上的拟线性投影算子 SL.一般说来 ,SL 既非度量投影算子 ,又非线性算子 .
We have proved that there exists a bounded quasi-linear projector S L from X onto L, for every closed Subspace L in reflexive Banach Space X. Generally Speaking, the bounded quasi-linear projector S L is neither the metric projector nor nonlinear operator.
出处
《数学的实践与认识》
CSCD
北大核心
2004年第6期166-171,共6页
Mathematics in Practice and Theory