期刊文献+

组合超弹性材料中的空穴生成与增长 被引量:1

Formation and Growth of Cavity in Composed Hyper-elastic Materials
下载PDF
导出
摘要 本文研究了一种组合不可压超弹性材料圆柱体中空穴的生成与增长问题,得到了这种材料受表面均布拉伸死荷载和轴向拉压共同作用下空穴生成问题的解析解,得到了不同组合情况下圆柱体中空穴生成时的临界载荷及分叉曲线,发现组合材料可以发生右分叉,也可以发生左分叉;给出了空穴生成后的应力分布,并讨论了所存在的应力间断和应力集中问题;通过能量比较分析了解的稳定性,讨论了发生右分叉或左分叉的条件,并分析了材料中预存微孔的增长情况。 The problem of cavity formation and growth in a solid circular cylinder composed of two incompressible hyper-elastic materials under a uniform radial tensile boundary dead-load and an axial stretch was examined. The analytic solution for the bifurcation problem was obtained. The critical load and the bifurcation curves were given and the left bifurcation as well as the right bifurcation may be found here. The catastrophe and concentration of stresses as well as the stress contributions subsequent to the cavitation were discussed. The stability of solutions was discussed through the energy comparison and the condition for the right or left bifurcation was discussed. The growth of a pre-existing void was also observed.
出处 《力学季刊》 CSCD 北大核心 2004年第2期175-182,共8页 Chinese Quarterly of Mechanics
基金 国家自然科学基金资助项目(No.10272069) 上海市重点学科建设资助项目
关键词 组合不可压超弹性材料 空穴的生成与增长 应力间断和应力集中 能量比较 composed incompressible hyper-elastic material void formation and growth catastrophe and concentration of stress energy comparison
  • 相关文献

参考文献9

  • 1Ball J M. Discontinuous equilibrium solutions and cavitation in nonlinear elasticity[J]. Phil Trans R Soc Lond, 1982, A306:557-610.
  • 2Horgan C O, Abeyaratne R. A bifurcation problem for a compressible nonlinearly elastic medium: Growth of a micro-void[J]. J of Elasticity, 1986, 16:189-200.
  • 3Sivaloganathan J. Uniqueness of regular and singular equilibria for spherically symmetric problems of nonlinear elasticity[J]. Arch Rail Mecb Anal, 198fi, 9fi:97-13fi.
  • 4Horgan C O. Cavitation in nonlinearly elastic solids: A review[J]. Appl Mech Rev, 1995, 48:471-485.
  • 5Horgan C O, Pence T J. Void nucleation in tensile dead-loading of a composite in compressible non-linearly elastic sphere[J]. J of Elasticity, 1989, 21:61-82.
  • 6Horgan C O, Pence T J. Cavity formation at the center of a composite incompressible non-linearly elastic sphere[J]. J of Elasticity,1989, 21:61-82.
  • 7Ren Jiusheng, Cheng Changjun.CAVITATED BIFURCATION FOR COMPOSED COMPRESSIBLE HYPER-ELASTIC MATERIALS[J].Acta Mechanica Solida Sinica,2002,15(3):208-213. 被引量:16
  • 8Ren J S, Cheng C J. Cavitated bifurcation for incompressible transverse isotropic hyper-elastic materials[J]. Journal of Engineering Mathematics, 2002, 44:245-257.
  • 9Valanis K C, Landel R F. The strain energy function of a hyperelastic material in terms of the extension ratios[J]. J of Applied Physics,1967, 28:2997-3002.

共引文献15

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部