期刊文献+

新建5G基站的站址规划研究——基于优化算法及动态规划模型 被引量:2

Research on Site Planning of New 5G Base Station—Based on Optimization Algorithm and Dynamic Programming Model
下载PDF
导出
摘要 针对新一代5G通信基站的建设及其站址规划问题,本文提出了一种基于粒子群优化算法与模拟退火算法的动态规划模型的站址规划方法。该模型考虑了基站覆盖半径、基站类型以及信号覆盖范围等因素,并利用广东湛江地区原有的基站业务数据来进行建模。实验结果表明,本文提出的粒子群优化算法与模拟退火算法可以有效地对地区的基站选址进行规划,并对实际的基站建设提供一定程度的参考。 Aiming at the construction and site planning of the new generation of 5G communication base sta-tions, this paper proposes a site planning method based on the dynamic programming model of particle swarm optimization algorithm and simulated annealing algorithm. The model CONSIDERS THE base station coverage radius, base station type, signal coverage range and other factors, and uses the original base station service data in Zhanjiang, Guangdong Province to model. The experi-mental results show that the proposed particle swarm optimization algorithm and simulated an-nealing algorithm can effectively plan the location of the base station in the ground-to-ground area, and provide a certain degree of reference for the actual base station construction.
出处 《应用数学进展》 2022年第11期8085-8093,共9页 Advances in Applied Mathematics
  • 相关文献

参考文献6

二级参考文献28

  • 1张潜,高立群,刘雪梅,胡祥培.定位-运输路线安排问题的两阶段启发式算法[J].控制与决策,2004,19(7):773-777. 被引量:44
  • 2刘远超,王晓龙,刘秉权.一种改进的k-means文档聚类初值选择算法[J].高技术通讯,2006,16(1):11-15. 被引量:23
  • 3吴淑花,蒋成煜.结合城市发展规划的移动通信基站选址[J].电信工程技术与标准化,2006,19(9):56-58. 被引量:13
  • 4袁方,周志勇,宋鑫.初始聚类中心优化的k-means算法[J].计算机工程,2007,33(3):65-66. 被引量:153
  • 5S L Hakimi. Optimum locations of switching centers and the absolute centers and medians of a graph [ J ]. Operations Research, 1964, 12(3) :450 -459.
  • 6G Z Konstantinos, N A Konstantinos. A heuristic algorithm for solving hazardous materials distribution problems[J]. European Journal of Operational Research, 2004,152 : 507 - 519.
  • 7J B MacQueen. Some Methods for classification and Analysis of Multivariate Observations [ C ]. Proceedings of 5 - th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, University of California Press, 1967, 1 : 281 - 297.
  • 8R O Duda, P E Hart. Pattern Classification and Scene Analysis [ M]. John Wiley and Sons. NY, 1973.
  • 9P S Bradley, O L Mangasarian, W N Street. Clustering via concave minimization. Advances in Neural Information Processing System [J]. MIT Press, 1997, 9:368 -374.
  • 10J M Pena, J A Lozano, P Larranaga. An empirical comparison of four initialization methods for the K - means algorithm[J]. Pattern Recognition Letter, 1999, 20 : 1027 - 1040.

共引文献56

同被引文献32

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部