期刊文献+

分数阶Kirchhoff-SchrÖdinger-Poisson系统解的存在性

Existence of Nontrivial Solution for a Class of Fractional Kirchhoff-SchrÖdinger-Poisson System
下载PDF
导出
摘要 本文研究如下分数阶Kirchhoff-SchrÖdinger-Poisson系统,非平凡解的存在性, 其中 a, b > 0 ,,  s, t ∈ (0, 1) 且 4s + 2t > 3, W (x) ∈ C(R3) 变号且 lim|x|→∞ W (x) = W∞ . 应用山路引理, 本文得到该系统至少存在一个非平凡解. In this paper, we study the existence of nontrivial solution for fractional Kirchhoff- SchrÖdinger-Poisson system:,where a, b > 0, , s, t ∈ (0, 1) and 4s + 2t > 3, W (x) ∈ C(R3) is a sign-changing function with lim|x|→∞  W (x) = W∞ . By using mountain pass lemma, we obtain that this system has at least one nontrivial solution.
作者 张召翔
机构地区 兰州理工大学
出处 《应用数学进展》 2024年第5期2191-2198,共8页 Advances in Applied Mathematics
  • 相关文献

参考文献4

二级参考文献19

  • 1Benci V,Fortunsto D.An eigenvalue problem for the Schrodinger-Maxwell equations[J].Topol.Methods Nonlinear Anal.,1998,11(2):283-293.
  • 2Benci V,Fortunsto D.Solitary waves of the nonlinear Klein-Gordon equation coupled with Maxwell equations[J].Rev.Math.Phys.,2002,14:409-420.
  • 3Ceramia G,Vaira G.Positive solutions for some non-autonomous Schrodinger-Poisson systems[J].J.Differential Equations,2010,248(3):521-543.
  • 4D'Aprile T,Mugnsi D.Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrodinger-Maxwell equations[J].Proc.Roy.Soc.Edinburgh,Sect.A Math.,2004,134:893-906.
  • 5Lions P L.Solutions of Hartree-Fock equations for Coulomb systems[J].Comm.Math.Phys.,1984,109(1):33-97.
  • 6Ruiz D.Semiclassical states for coupled Schrodinger-Maxwell equations:Concentration around a sphere[J].Math.Model.Methods Appl.Sci.,2005,15(1):141-164.
  • 7Ruiz D.The Schrodinger-Poisson equation under the effect of a nonlinear local term[J].J.Funct.Anal.,2006,237(2):655-674.
  • 8Benci V. and Fortunato D., An eigenvalue problem for the Schrodinger-Maxwell equations. Topol. Methods Nonlinear Anal., 11 (1998), 283-293.
  • 9Benci V. and Fortunato D., Solitary waves of the nonlinear Klein-Gordon equation coupled with Maxwell equations. Rev. Math. Phys., 14 (2002), 409-420.
  • 10Cerami G. and Vaira G., Positive solutions for some non-autonomous Schrodinger-Poisson systems. 1. Differential Eauations, 248 (2010): 521-543.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部