摘要
Boiti-Leon-Pempinelli (BLP)非线性系统的许多 形变双曲函数、 形变三角函数、双曲函数和三角函数形式行波解被研究。研究表明在Riccati方程条件下,BLP系统不同的动力行为与被约束Riccati方程的多个参量之间存在着联系。为此,提出借助这些参量来预报非线性系统行为变化规律,和利用改变参量的方法实现对非线性系统的动力学行为控制的思想。
A series of traveling waves of q-deformation hyperbolic function, q-deformation trigonometric function, hyperbolic function and trigonometric function for BLP nonlinear system are investigated. The relationship is found between various dynamical behavior of BLP system and multiple parameters based on confined Riccati equation. Predicting variation of the behavior of nonlinear system using variation of these parameters is proposed. Idea to control dynamical behavior of nonlinear system by means of changing parameters is given.
出处
《动力系统与控制》
2017年第3期119-126,共8页
Dynamical Systems and Control
基金
浙江省自然科学基金资助,项目号:LY13A050001。