期刊文献+

基于面部特征识别的表情识别系统

Facial Feature-based Expression Recognition System
下载PDF
导出
摘要 随着计算机技术和人工智能研究的不断进步,表情识别(Facial Expression Recognition, FER)是人工心理和情感研究的核心问题,也是人机交互技术的重要方向。本文深入探讨了表情识别系统的设计,特别是对特征提取相关算法进行了改进,目的是提高表情识别的精度,并最终实现表情识别系统的目标。本文使用一种基于改进的AdaBoost算法和Haar特征的方法,用于提高人脸检测的准确率性,并且提高速度。对比改进前后算法训练时长和准确率,梳理新旧算法在人脸检测的实验结果,证实了新算法保证准确率的基础上,缩短训练时间,具有一定的优越性。 With the continuous progress of computer technology and artificial intelligence research, Facial Expression Recognition (FER) is the core problem of artificial psychology and emotion research, and it is also an important direction of human-computer interaction technology. This paper discusses the design of the expression recognition system in depth, especially the improvement of the feature extraction-related algorithm, in order to improve the accuracy of expression recognition and ultimately achieve the goal of the expression recognition system. This paper uses a method based on the improved AdaBoost algorithm and Haar features to improve the accuracy and speed of face detection. Comparing the training time and accuracy rate of the algorithm before and after improvement, and combing the experimental results of the new and old algorithms in face detection, it is confirmed that the new algorithm has certain advantages in shortening the training time on the basis of ensuring accuracy.
出处 《图像与信号处理》 2023年第3期260-269,共10页 Journal of Image and Signal Processing
  • 相关文献

参考文献8

二级参考文献57

  • 1李巍巍.基于积分图快速图像处理方法研究[J].自动化与仪器仪表,2016(5):105-106. 被引量:4
  • 2李闯,丁晓青,吴佑寿.一种改进的AdaBoost算法——AD AdaBoost[J].计算机学报,2007,30(1):103-109. 被引量:53
  • 3武妍,项恩宁.动态权值预划分实值Adaboost人脸检测算法[J].计算机工程,2007,33(3):208-209. 被引量:12
  • 4Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line learning and an application to boosting [J].Journal of Computer and System Sciences, August 1997, 55 (1):119-139.
  • 5Yoav Freund and Robert E. Schapire. Experiments with a new boosting algorithm[C]. In Machine Learning: Proceedings of the Thirteenth International Conference, 1996, 148-156.
  • 6Robert E Schapire. The boosting approach to machine learning:an overview [C]. In MSRI Workshop on Nonlinear Estimation and Classification, 2002
  • 7Quinlan J R. Bagging, boosting, and C4. 5 [C]. In Proceedings of the Thirteenth National Conference on Artificial Intelligence,1996,725-730.
  • 8Ross Quinlan J. C4. 5: Programs for machine learning[M]. Morgan Kaufmann, 1993.
  • 9Valiant L.A Theory of the Learnable[J].Communications of the ACM,1984,27(11):1134-1142.
  • 10Schapire R E.The Strength of Weak Learnability[J].Machine Learning,1990,5(2):197-227.

共引文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部