期刊文献+

半线性抛物问题高效有限体积元法 被引量:2

The Efficient Finite Volume Element Methods for Semilinear Parabolic Equations
下载PDF
导出
摘要 本文研究了一类半线性抛物方程的有限体积元全离散格式。首先在空间上以插值系数线性有限体积元进行半离散,得到关于时间的一阶非线性常微分方程组的初值问题,然后在时间上采用向后差分方法得到全离散格式。其次讨论了该全离散格式的稳定性和收敛性。最后给出了一个数值例子说明所研究方法的高效性。 In this paper, the fully discrete finite volume element schemes for a class of semi-linear parabolic equations are studied. Firstly, the initial value problem of the first-order nonlinear ordinary dif-ferential equations with time is obtained by interpolation coefficient finite volume element in space, and then the fully discrete scheme is obtained by backward difference method in time. Secondly, the stability and convergence of the fully discrete scheme are discussed. Finally, a numerical example is given to illustrate the efficiency of the proposed method.
机构地区 湖南科技大学
出处 《理论数学》 2019年第8期961-968,共8页 Pure Mathematics
基金 国家自然科学基金项目(11571102)资助课题。
  • 相关文献

参考文献1

二级参考文献9

  • 1朱起定.二次三角形有限元的导数佳点[J].湘潭大学学报,1981,3:36-45.
  • 2雷丹 陈传淼.非线性椭圆问题插值系数有限元的超收敛性[J].湘潭大学自然科学学报,2000,22:15-19.
  • 3Prehse J, Rannacher R. Asymptotic Lee-error estimate for linear finite element appproximations of quasilinear boundary value problems. SIAM J Numer Anal, 1978, 15:418-431
  • 4Chen C M. W^I,∞-interior for finite element methods on regular mesh. J Comput Math, 1985, 3:1-7
  • 5Zenisek A. Nonlinear Elliptic and Evolution Problems and Their Finite Element Approximations. London:Academic Press, 1990
  • 6Zlamal M. A finite element solution of the nonlinear heat equation. RAIRO. Anal Numer, 1980, 14:203-216
  • 7Larson S, Tomee V, Zhang N Y. Interpolation of coefficients and transformation of dependent variable in element methods for the nonlinear heat equation. Math Methods Appl Sci, 1989, 11:105-124
  • 8Chen C M, Larson S, Zhang N Y. Error estimates of optimal order for finite element methods interpolated coefficients for the nonlinear heat equation. IMA J Numer Anal, 1989, 9:507-524
  • 9陈传淼.三角形有限元的超收敛性[J].中国科学(A辑),1999,29(6):501-508. 被引量:4

共引文献1

同被引文献8

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部