期刊文献+

Clifford半群上的罗巴算子

Rota-Baxter Operators on Clifford Semigroups
下载PDF
导出
摘要 代数上的罗巴算子的理论已有丰富的成果。2021年,Guo,Lang和Sheng提出了群上罗巴算子的概念。最近,作为群上罗巴算子的推广,Catino,Mazzotta和Stefanelli又提出了Clifford半群上的(权为1的)罗巴算子。本文首先给出了Clifford半群上罗巴算子的一些新性质和新构造方法,然后提出了Clifford半群上权为−1的罗巴算子的概念,证明了Clifford半群上的罗巴算子和权为−1的罗巴算子之间存在一一对应关系,推广了群上罗巴算子的相关结果。 The theory of Rota-Baxter operators on algebras has been fruitful. In 2021, Guo, Lang and Sheng have introduced the notion of Rota-Baxter operators on groups. Recently, as a generalization of Rota-Baxter operators on groups, Catino, Mazzotta, and Stefanelli have proposed Rota-Baxter operators with weight 1 on Clifford semigroups. In this paper, we first give some new properties and construction methods of Rota-Baxter operators with weight 1 on Clifford semigroups, then propose the concept of Rota-Baxter operators with weight −1 on Clifford semigroups, and prove that there is a one-to-one correspondence between Rota-Baxter operators of weight 1 and −1 on Clifford semigroups. This extends the results of Rota-Baxter operators on groups.
作者 龚晓倩 尹碟
出处 《理论数学》 2024年第5期590-598,共9页 Pure Mathematics
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部