期刊文献+

吉布斯抽样在数据缺失中的应用及其R实现

Application of Gibbs Sampling in Data Missing and Execution in R
下载PDF
导出
摘要 数据缺失是统计研究中经常遇到的问题,文章在总结常见缺失数据的处理方法的基础上,提出了用Gibbs抽样方法来解决数据缺失问题,并通过R语言来实现这一过程,从而为数据缺失提供一种新的解决思路。实验结果表明,Gibbs抽样是一种效果比较理想的处理缺失数据的方法。 Data missing is a common problem in statistical research. Based on summarizing the common so-lutions, this paper proposes to solve the problem by Gibbs sampling, and achieve this process through the R language, so as to provide a new method. The experimental results show that Gibbs sampling is an ideal method to deal with missing data.
作者 丁霞 Xia Ding(School of Economics & Management, Shanghai Maritime University, Shanghai)
出处 《统计学与应用》 2016年第4期359-364,共6页 Statistical and Application
关键词 GIBBS抽样 数据缺失 R语言 Gibbs Sampling Data Missing R Language
  • 相关文献

参考文献2

二级参考文献17

  • 1李希菲,洪玲霞.用哑变量法求算立地指数曲线族的研究[J].林业科学研究,1997,10(2):215-219. 被引量:19
  • 2Albert, J. H. (1992). Bayesian estimation of normal ogive item response curves using Gibbs sampling. Journal of Educational Statistics, 17, 251-269.
  • 3Huisman, M. (2000). Imputation of missing item responses: some simple techniques. Quality and Quantity, 34, 331-351.
  • 4Jones, D. H., & Nediak, M. (2000). Item parameter calibration of LSAT items using MCMC approximation of Bayes posterior distributions. Rutcor research report, 7-2000.
  • 5Karkee, T., & Finkelman, M. (2007, April). Missing Data treatment Methods in Parameter Recovery for a Mixed-Format Test. Paper presented at the annual meeting of the American Educational Research Association, Chicago.
  • 6利特尔,鲁宾.(2004).缺失数据统计分析.(孙山泽译). 北京:中国统计出版社.
  • 7Ludlow, L. H., & O’Leary M. (1999). Scoring omitted and not-reached items: practical data analysis implications. Educational and Psychological Measurement, 59, 615-630.
  • 8Maris, G., & Bechger, T. M. (2005). An introduction to the DA-T Gibbs sampler for the two-parameter logistic (2PL) model and beyond. Psicológica, 26, 327-352.
  • 9Muraki, E., & Bock, R. D. (1993). PARSCALE: IRT based test scoring and item analysis for graded open-ended exercises and performance tasks. Chicago: Scientific software Int.
  • 10Patz, R. J., & Junker, B. W. (1999a). A straightforward approach to markov chain monte carlo methods for item response models. Journal of Educational and Behavioral Statistics, 24, 146-178.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部