期刊文献+

基于机器学习的帕金森病进展预测

Prediction of Parkinson’s Disease Progression Based on Machine Learning
下载PDF
导出
摘要 帕金森病作为一种慢性神经系统疾病严重影响中老年人群的生活质量,其运动功能评分(motor-UPDRS)对于评估患者疾病严重程度和治疗效果至关重要。本文基于UCI的帕金森病远程语音数据集,首先采用lasso变量选择方法筛选出影响运动功能评分的15个重要特征,分别构建高斯过程回归、支持向量回归、随机森林和XGBoost四种机器学习模型。经过训练、贝叶斯调参优化和性能评估,发现XGBoost模型在预测帕金森病患者的运动功能评分方面表现最优,模型的RMSE、MAE和R2分别为1.18,0.63和0.98。最后对XGBoost模型的特征重要性进行分析,探寻影响帕金森病预测的关键特征,为帕金森病的诊疗提供更加合理的理论和技术支撑。As a chronic neurological disease, Parkinson’s disease seriously affects the quality of middle-aged and elderly people’s life. Its motor function score (motor-UPDRS) is crucial to assess the severity of the disease and the treatment effect of patients. Based on the remote voice dataset of Parkinson’s disease from UCI, this paper first used the lasso variable selection method to screen out 15 important features that affect motor function scores, and constructed four machine learning models, namely Gaussian process regression, support vector regression, random forest and XGBoost respectively. After training, parameter tuning and performance evaluation, it was found that the XGBoost model had the best performance in predicting the motor function score of patients with Parkinson’s disease, with RMSE, MAE and R2 of the model being 1.18, 0.63 and 0.98 respectively. Finally, the feature importance of the XGBoost model was analyzed, and the key features affecting the prediction of Parkinson’s disease were explored, so as to provide more reasonable theoretical and technical support for the diagnosis and treatment of Parkinson’s disease.
作者 徐曼曼
出处 《统计学与应用》 2024年第5期1663-1676,共14页 Statistical and Application
  • 相关文献

参考文献4

二级参考文献55

  • 1王志勇,郭创新,曹一家.基于模糊粗糙集和神经网络的短期负荷预测方法[J].中国电机工程学报,2005,25(19):7-11. 被引量:53
  • 2Simon DK, Lin MT, Zheng L, et al. Somatic mitochondrial DNA mutations in cortex and substantia nigra in aging and Parkinson's diaease.Neurobiol Aging,2004,25:71-81.
  • 3Mawrin C, Kieches E, Krause G, et al. Reglon-speclfic analysis of mitochondrial DNA deletions in neurodegenerative disorders in humans. Neurosci Lett ,2004,357 : 111-114.
  • 4Autere J, Moilanen JS, Finnila S, et al. Mitochondrial DNA polymorphisms at risk factors for Parkinson's disease and Parkinson's disease dementia. Hum Genet,2004,115:29-35.
  • 5Adam-Vizi V. Production of reactive oxygen species in brain mitochondria: contribution by electron transport chain and non-electron transport chain sources. Antioxid Redox Signal ,2005,7 : 1140-1149.
  • 6McNaught KS, Olanow CW. Proteolytic stress : a unifying concept for the etiopathogenesis of Parkinson's disease. Ann Neurol,2003,53 (Suppl3) :S73-S86.
  • 7Jian F. Genetic factors in Parkinson's disease and potential therapeutic targets. Curt Neurophar,2003 ,1:301-303.
  • 8McNaught KS, Jenner P. Proteasome function is impaired in substantia nigra in Parkinson's disease. Neurosci Lett ,2001,297 :191-194.
  • 9McNaught KS, Belezaire R, Isacson O, et al. Altered proteasome function in Parkinson's disease. Exp Neurol,2003 ,179 :38-46.
  • 10Becchia A, Debetta P, Negro A, et al. α-synuclein and Parkinaon's disease. FASEB J ,2004,18:617-626.

共引文献129

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部