期刊文献+

Day-Ahead Probabilistic Load Flow Analysis Considering Wind Power Forecast Error Correlation

Day-Ahead Probabilistic Load Flow Analysis Considering Wind Power Forecast Error Correlation
下载PDF
导出
摘要 Short-term power flow analysis has a significant influence on day-ahead generation schedule. This paper proposes a time series model and prediction error distribution model of wind power output. With the consideration of wind speed and wind power output forecast error’s correlation, the probabilistic distributions of transmission line flows during tomorrow’s 96 time intervals are obtained using cumulants combined Gram-Charlier expansion method. The probability density function and cumulative distribution function of transmission lines on each time interval could provide scheduling planners with more accurate and comprehensive information. Simulation in IEEE 39-bus system demonstrates effectiveness of the proposed model and algorithm. Short-term power flow analysis has a significant influence on day-ahead generation schedule. This paper proposes a time series model and prediction error distribution model of wind power output. With the consideration of wind speed and wind power output forecast error’s correlation, the probabilistic distributions of transmission line flows during tomorrow’s 96 time intervals are obtained using cumulants combined Gram-Charlier expansion method. The probability density function and cumulative distribution function of transmission lines on each time interval could provide scheduling planners with more accurate and comprehensive information. Simulation in IEEE 39-bus system demonstrates effectiveness of the proposed model and algorithm.
出处 《Energy and Power Engineering》 2017年第4期292-299,共8页 能源与动力工程(英文)
关键词 Wind Power Time Series Model FORECAST ERROR Distribution FORECAST ERROR CORRELATION PROBABILISTIC Load Flow Gram-Charlier Expansion Wind Power Time Series Model Forecast Error Distribution Forecast Error Correlation Probabilistic Load Flow Gram-Charlier Expansion
  • 相关文献

参考文献6

二级参考文献86

  • 1丁明,吴义纯,张立军.风电场风速概率分布参数计算方法的研究[J].中国电机工程学报,2005,25(10):107-110. 被引量:218
  • 2杨秀媛,肖洋,陈树勇.风电场风速和发电功率预测研究[J].中国电机工程学报,2005,25(11):1-5. 被引量:584
  • 3Reigh A. Analysis of wind generation impact on ERCOT ancillary services requirements[R]. New York: GE Energy, 2008.
  • 4Banakar H, Luo C, Ooi B K. Impacts of wind power minute-to-minute variations on power system operation [J]. IEEE Trans. on Power Systems, 2008, 23(1): 150-160.
  • 5Papaefthymiou G, Klockl B. MCMC for wind power simulation[J]. IEEE Trans. on Energy Conversion, 2008, 23(1): 234-240.
  • 6Chen P, Pedersen T, Bak-Jensen B, et al. ARiMA-based time series model of stochastic wind power generation [J]. IEEE Trans. on Power Systems, 2010, 25(2): 667-676.
  • 7Carta J, Ramirez P, Velazquez S. A review of wind speed probability distributions used in wind energy analysis [J]. Renewable and Sustainable Energy Reviews, 2009, 13(5): 933-955.
  • 8Villanueva D, Pazos J L, Feijoo A. Probabilistic load flow including wind power generation[J]. IEEE Trans. on Power Systems, 2011, 26(3): 1659-1667.
  • 9Usaola J. Probabilistic load flow with correlated wind power injections[J]. Electric Power Systems Research, 2010, 80(5): 528-536.
  • 10Tentzerakis S, Papathanassiou S. An Investigation of the harmonic emissions of wind turbines[J]. IEEE Trans. on Energy Conversion, 2007, 22(1): 150-158.

共引文献419

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部