摘要
This paper describes the corrosion behavior of aluminum, copper, and mild steel when exposed to chloride media using both electrochemical noise analysis (ENA) and electrochemical impedance spectroscopy (EIS). Analysis of electrochemical noise (EN) data demonstrated the need for removal of drifts in both potential and current fluctuations. Statistical analysis such as noise resistance, localization index, skewness and kurtosis has been evaluated. Noise resistance showed a good agreement with polarization resistance. Fast Fourier transformation (FFT) has been applied to convert EN data from the time domain to the frequency domain. Spectral noise plots showed a good agreement with impedance spectra for the different alloys determined at the same exposure time. Spectral and statistical analysis can extract useful information from EN data.
This paper describes the corrosion behavior of aluminum, copper, and mild steel when exposed to chloride media using both electrochemical noise analysis (ENA) and electrochemical impedance spectroscopy (EIS). Analysis of electrochemical noise (EN) data demonstrated the need for removal of drifts in both potential and current fluctuations. Statistical analysis such as noise resistance, localization index, skewness and kurtosis has been evaluated. Noise resistance showed a good agreement with polarization resistance. Fast Fourier transformation (FFT) has been applied to convert EN data from the time domain to the frequency domain. Spectral noise plots showed a good agreement with impedance spectra for the different alloys determined at the same exposure time. Spectral and statistical analysis can extract useful information from EN data.