摘要
The discovery of oil and gas in Uganda has attracted many investors, leading to increase in fuel/gas distributing companies and fueling stations creating rapid demand for land to locate the stations compared to available open urban land. Because of the explosive and combustion characteristics of fuel stored and dispensed at stations, several studies have been conducted on different fires at fueling stations such as static fire, jet fire, vapor cloud explosions, open fires, etc. but there was need to assess spatially the risk of fire from stations, its consequences and sovereignty on buildings surrounding them. This was done basing on seven parameters—proximity of buildings to stations, building materials, distance between buildings, wind speed, temperature, slope and vegetation. Analytical hierarchy process and pairwise comparison were used to weight the parameters based on their relative importance. Weighted sum tool was applied to generate the fire risk maps for the quarters—December to February, March to May, June to August, and September to November from 2008 to 2013. The parameters were overlaid with the buildings in each risk zone for all the four quarters and their influences determined. The highest contributors were proximity of the buildings to stations, building materials and separation between buildings. Most of the affected buildings were made of rusted corrugated iron sheets and wood;the separation distance from one building to another ranged from 0 - 4 m. Most of buildings located within 100 m from stations were at moderate risk level and within 50 m were at highest risk level. The period of December to February and June to August had the highest risk. The findings can be used to guide planners and policy makers on building location vs. material vs. separation. It can also guide developers on where, when and how to carry out their developments.
The discovery of oil and gas in Uganda has attracted many investors, leading to increase in fuel/gas distributing companies and fueling stations creating rapid demand for land to locate the stations compared to available open urban land. Because of the explosive and combustion characteristics of fuel stored and dispensed at stations, several studies have been conducted on different fires at fueling stations such as static fire, jet fire, vapor cloud explosions, open fires, etc. but there was need to assess spatially the risk of fire from stations, its consequences and sovereignty on buildings surrounding them. This was done basing on seven parameters—proximity of buildings to stations, building materials, distance between buildings, wind speed, temperature, slope and vegetation. Analytical hierarchy process and pairwise comparison were used to weight the parameters based on their relative importance. Weighted sum tool was applied to generate the fire risk maps for the quarters—December to February, March to May, June to August, and September to November from 2008 to 2013. The parameters were overlaid with the buildings in each risk zone for all the four quarters and their influences determined. The highest contributors were proximity of the buildings to stations, building materials and separation between buildings. Most of the affected buildings were made of rusted corrugated iron sheets and wood;the separation distance from one building to another ranged from 0 - 4 m. Most of buildings located within 100 m from stations were at moderate risk level and within 50 m were at highest risk level. The period of December to February and June to August had the highest risk. The findings can be used to guide planners and policy makers on building location vs. material vs. separation. It can also guide developers on where, when and how to carry out their developments.