摘要
This paper describes a flow simulation model used to determine the effects of a shroud on the performance of a wind turbine. Also, it focuses on comparing the standard type of wind turbines— upwind turbine with three blades fixed on a horizontal axis—with a new type that is called a shrouded wind turbine. In addition, the two types of turbines are compared in terms of velocities profiles, pressure distribution and power output when applying four different velocities of winds: 10, 20, 30, 40 mph. Numerical values and graphs are highlighted in order to show the main differences between the shrouded turbine and the conventional one. Finally, a conclusion and some recommendations are provided to summarize the scope of this research and give a better prediction for a future optimal design of the shrouded turbines.
This paper describes a flow simulation model used to determine the effects of a shroud on the performance of a wind turbine. Also, it focuses on comparing the standard type of wind turbines— upwind turbine with three blades fixed on a horizontal axis—with a new type that is called a shrouded wind turbine. In addition, the two types of turbines are compared in terms of velocities profiles, pressure distribution and power output when applying four different velocities of winds: 10, 20, 30, 40 mph. Numerical values and graphs are highlighted in order to show the main differences between the shrouded turbine and the conventional one. Finally, a conclusion and some recommendations are provided to summarize the scope of this research and give a better prediction for a future optimal design of the shrouded turbines.