期刊文献+

Analysis of Highway Sloped Median Performance for Containment of Errant Vehicles

Analysis of Highway Sloped Median Performance for Containment of Errant Vehicles
下载PDF
导出
摘要 Errant vehicles occur as a result of the driver losing control of the vehicle. This may be due to sudden illness, dozing off or skidding while attempting a manoeuvre. In containing such an errant vehicle on a highway, the priority is to avoid collision with other vehicles. A sloped highway median provides a run-off area for such vehicles where the vehicle can be slowed down and stopped without the danger of being re-directed into the path of other vehicles as may occur with edge barriers. Here, the effect of a containment barrier at the bottom of the sloped median is studied with a view to prevent the vehicle from being redirected outside the median after colliding with the barrier. The focus of this work is on the change of kinematic states due to the collision, so a momentum-based vehicle collision analysis is developed, with the collision energy loss related to the vehicle stiffness being considered by coefficient of restitution. The average maximum lateral displacements post-collision are read from the diagram of vehicle x-y trajectories. In this way, the most suitable median slope 1:6 is selected. Errant vehicles occur as a result of the driver losing control of the vehicle. This may be due to sudden illness, dozing off or skidding while attempting a manoeuvre. In containing such an errant vehicle on a highway, the priority is to avoid collision with other vehicles. A sloped highway median provides a run-off area for such vehicles where the vehicle can be slowed down and stopped without the danger of being re-directed into the path of other vehicles as may occur with edge barriers. Here, the effect of a containment barrier at the bottom of the sloped median is studied with a view to prevent the vehicle from being redirected outside the median after colliding with the barrier. The focus of this work is on the change of kinematic states due to the collision, so a momentum-based vehicle collision analysis is developed, with the collision energy loss related to the vehicle stiffness being considered by coefficient of restitution. The average maximum lateral displacements post-collision are read from the diagram of vehicle x-y trajectories. In this way, the most suitable median slope 1:6 is selected.
出处 《World Journal of Engineering and Technology》 2018年第1期68-80,共13页 世界工程和技术(英文)
关键词 VEHICLE COLLISION Model Simulation HIGHWAY Sloped MEDIAN Vehicle Collision Model Simulation Highway Sloped Median
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部