期刊文献+

Quantitative Assessment of the Effect of Nitric Oxide Synthase Inhibition on Tumor Vascular Activity Using Dynamic Contrast-Enhanced Computed Tomography 被引量:1

Quantitative Assessment of the Effect of Nitric Oxide Synthase Inhibition on Tumor Vascular Activity Using Dynamic Contrast-Enhanced Computed Tomography
下载PDF
导出
摘要 Purpose: The purpose of this study was to develop a method to quantitatively assess the effect of nitric oxide synthase (NOS) inhibition on tumor vascular activity using dynamic contrast-enhanced computed tomography (DCE-CT) and to investigate its usefulness using animal experiments. Mate-rials and Methods: The DCE-CT studies were performed in anesthetized Fisher rats bearing tumors using a 4-row multi-slice CT. The scanning started 4 s before a bolus injection of iodinated contrast agent (CA) (150 mgI/kg) from the tail vein using an automatic injector and lasted 60 s at 1-s in-tervals. The contrast enhancement (CE) images were generated by subtracting the CT images before and after the administration of CA. First, the DCE-CT studies were performed before and 15, 30, and 45 min after administration of N-nitro-L-arginine (L-NNA) (1, 3, and 10 mg/kg) or vehicle, and the relative CE values were calculated by normalizing the CE image at each time point by that obtained from the first DCE-CT study. Second, we investigated the case when L-arginine (L-ARG) (200 mg/kg) and L-NNA (1, 3, and 10 mg/kg) were administered after the first and second DCE-CT studies, respectively. Third, we investigated the case when L-NNA (1, 3, and 10 mg/kg) and L-ARG (200 mg/kg) were administered after the first and second DCE-CT studies, respectively. Finally, we investigated the case when L-NNA (1, 3, and 10 mg/kg) and L-ARG (200 mg/kg) were administered simultaneously after the first DCE-CT study. Results: The relative CE value significantly decreased after L-NNA administration in a dose-dependent manner (p-values = 0.0074 and <0.0001 for 0 vs. 3 mg/kg and 0 vs. 10 mg/kg, respectively, at 15 min, 0.0003 and <0.0001 for 0 vs. 3 mg/kg and 0 vs. 10 mg/kg, respectively, at 30 min, and 0.0367 and 0.0004 for 0 vs. 3 mg/kg and 0 vs. 10 mg/kg, respectively, at 45 min). When L-ARG was administered prior to the administration of 1 mg/kg L-NNA, the relative CE value at 45 min was significantly higher than that at 15 min. When L-ARG was administered after L-NNA administration, there was no significant difference between the relative CE values at 15 min and 45 min. These results suggest that when using L-NNA in combination with L-ARG, their effect on tumor vascular activity differs depending on the order of their administration. When L-NNA and L-ARG were administered simultaneously, there was a tendency for the relative CE value to be higher than that when only L-NNA was administered, at all injected doses of L-NNA. Conclusion: Our method using DCE-CT is useful for monitoring the effect of NOS inhibition on tumor vascular activity and for determining the optimal injected dose and timing of NOS inhibitors for anticancer therapy. Purpose: The purpose of this study was to develop a method to quantitatively assess the effect of nitric oxide synthase (NOS) inhibition on tumor vascular activity using dynamic contrast-enhanced computed tomography (DCE-CT) and to investigate its usefulness using animal experiments. Mate-rials and Methods: The DCE-CT studies were performed in anesthetized Fisher rats bearing tumors using a 4-row multi-slice CT. The scanning started 4 s before a bolus injection of iodinated contrast agent (CA) (150 mgI/kg) from the tail vein using an automatic injector and lasted 60 s at 1-s in-tervals. The contrast enhancement (CE) images were generated by subtracting the CT images before and after the administration of CA. First, the DCE-CT studies were performed before and 15, 30, and 45 min after administration of N-nitro-L-arginine (L-NNA) (1, 3, and 10 mg/kg) or vehicle, and the relative CE values were calculated by normalizing the CE image at each time point by that obtained from the first DCE-CT study. Second, we investigated the case when L-arginine (L-ARG) (200 mg/kg) and L-NNA (1, 3, and 10 mg/kg) were administered after the first and second DCE-CT studies, respectively. Third, we investigated the case when L-NNA (1, 3, and 10 mg/kg) and L-ARG (200 mg/kg) were administered after the first and second DCE-CT studies, respectively. Finally, we investigated the case when L-NNA (1, 3, and 10 mg/kg) and L-ARG (200 mg/kg) were administered simultaneously after the first DCE-CT study. Results: The relative CE value significantly decreased after L-NNA administration in a dose-dependent manner (p-values = 0.0074 and <0.0001 for 0 vs. 3 mg/kg and 0 vs. 10 mg/kg, respectively, at 15 min, 0.0003 and <0.0001 for 0 vs. 3 mg/kg and 0 vs. 10 mg/kg, respectively, at 30 min, and 0.0367 and 0.0004 for 0 vs. 3 mg/kg and 0 vs. 10 mg/kg, respectively, at 45 min). When L-ARG was administered prior to the administration of 1 mg/kg L-NNA, the relative CE value at 45 min was significantly higher than that at 15 min. When L-ARG was administered after L-NNA administration, there was no significant difference between the relative CE values at 15 min and 45 min. These results suggest that when using L-NNA in combination with L-ARG, their effect on tumor vascular activity differs depending on the order of their administration. When L-NNA and L-ARG were administered simultaneously, there was a tendency for the relative CE value to be higher than that when only L-NNA was administered, at all injected doses of L-NNA. Conclusion: Our method using DCE-CT is useful for monitoring the effect of NOS inhibition on tumor vascular activity and for determining the optimal injected dose and timing of NOS inhibitors for anticancer therapy.
作者 Kenya Murase Yoshinori Kusakabe Shohei Miyazaki Kenya Murase;Yoshinori Kusakabe;Shohei Miyazaki(Department of Medical Physics and Engineering, Division of Medical Technology and Science, Faculty of Health Science, Graduate School of Medicine, Osaka University, Osaka, Japan)
出处 《Open Journal of Medical Imaging》 2016年第2期42-52,共12页 医学影像期刊(英文)
关键词 Nitric Oxide Synthase N-Nitro-L-Arginine L-ARGININE Tumor Vascular Activity Dynamic Contrast-Enhanced Computed Tomography Contrast Enhancement Nitric Oxide Synthase N-Nitro-L-Arginine L-Arginine Tumor Vascular Activity Dynamic Contrast-Enhanced Computed Tomography Contrast Enhancement
  • 相关文献

同被引文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部