摘要
Introduction: Simple suture isn’t always possible in large congenital diaphragmatic hernia (cdh) defects. Synthetic materials are used for correction such as Silastic®, Gore-Tex® (GT), Teflon® or biological, such as autologous muscle patches. It was shown that bovine pericardium (bp) was effective to correct those large defects with many positive outcomes when compared with syntactic materials. Aim: This study aims to establish an experimental model of correction for large diaphragmatic defect with PB and GT patches to compare histologically the tissue interaction between them and diaphragm in young Wistar rats. Materials & Methods: 15 wistar rats were divided in 3 groups: Rats that used BP was named G1;Rats that used GT was named G2;and rats with only scraping in the diphragm, named G3 (control). Animals were submited to a laparotomy and fixed pathces to diaphragms and harvested 3 weeks later. Area between normal diaphragm and patches were isolated and separated for histological analysis, such as lymphocytic infiltration (inflammation), neovascularization and fibrosis. Results: G1 presented inflammation between BP and Diaphragm In 5 Samples. G2 Presented Neovascularization In 5 Samples, But No inflammation. Fibrotic tissue overlapping GT patches occurred in 3 samples in G2. Comparing G1 with G2 there was a significant statistical difference concerning inflammation (P = 0.0079), in G1. Comparing neovascularization there is no significant statistical difference (P = 0.4444), despite a slight higher incidence in G2. Fibrosis in both groups presented no significant statistical difference (P = 0.4444), despite a slight higher incidence in G2. There were no alterations in G3. Discussion: Despite the statistical difference in the inflammatory process was more frequent in G1 (P = 0.0079), neovascularization and fibrosis were more frequent in G2. Conclusion: The proposed experimental model was satisfactory to reproduce suture of patches in the diaphragm. These results suggests that inflammation, neovascularization and fibrosis indeed contribute to a benign healing process that reacts differently in each group but can drive to a more lasting and permanent results when biological patch is considered. Statistical report suggests that this study should be continued with a larger sample of animals and a wider period of time before harvest.
Introduction: Simple suture isn’t always possible in large congenital diaphragmatic hernia (cdh) defects. Synthetic materials are used for correction such as Silastic®, Gore-Tex® (GT), Teflon® or biological, such as autologous muscle patches. It was shown that bovine pericardium (bp) was effective to correct those large defects with many positive outcomes when compared with syntactic materials. Aim: This study aims to establish an experimental model of correction for large diaphragmatic defect with PB and GT patches to compare histologically the tissue interaction between them and diaphragm in young Wistar rats. Materials & Methods: 15 wistar rats were divided in 3 groups: Rats that used BP was named G1;Rats that used GT was named G2;and rats with only scraping in the diphragm, named G3 (control). Animals were submited to a laparotomy and fixed pathces to diaphragms and harvested 3 weeks later. Area between normal diaphragm and patches were isolated and separated for histological analysis, such as lymphocytic infiltration (inflammation), neovascularization and fibrosis. Results: G1 presented inflammation between BP and Diaphragm In 5 Samples. G2 Presented Neovascularization In 5 Samples, But No inflammation. Fibrotic tissue overlapping GT patches occurred in 3 samples in G2. Comparing G1 with G2 there was a significant statistical difference concerning inflammation (P = 0.0079), in G1. Comparing neovascularization there is no significant statistical difference (P = 0.4444), despite a slight higher incidence in G2. Fibrosis in both groups presented no significant statistical difference (P = 0.4444), despite a slight higher incidence in G2. There were no alterations in G3. Discussion: Despite the statistical difference in the inflammatory process was more frequent in G1 (P = 0.0079), neovascularization and fibrosis were more frequent in G2. Conclusion: The proposed experimental model was satisfactory to reproduce suture of patches in the diaphragm. These results suggests that inflammation, neovascularization and fibrosis indeed contribute to a benign healing process that reacts differently in each group but can drive to a more lasting and permanent results when biological patch is considered. Statistical report suggests that this study should be continued with a larger sample of animals and a wider period of time before harvest.
作者
Artur Fracassi Guerra
Mauro Razuk Filho
Neil Ferreira Novo
Willy Marcus França
Artur Fracassi Guerra;Mauro Razuk Filho;Neil Ferreira Novo;Willy Marcus França(Medical Science and Health Faculty, Catholic University of Sao Paulo, Sao Paulo, Brazil;Department of Medicine—Service of Statistical Studies, Sao Paulo, Brazil;Department of Medicine, Catholic University of Sao Paulo, Sao Paulo, Brazil)