期刊文献+

Monte Carlo Simulations of Topological Properties in Two-Phase Polycrystalline Materials for Several Diffusion Mechanism

Monte Carlo Simulations of Topological Properties in Two-Phase Polycrystalline Materials for Several Diffusion Mechanism
下载PDF
导出
摘要 Numerical simulations by means of the Monte Carlo Potts model have been provided to simulate grain structures in two-phase polycrystalline materials. The topological features in the simulated microstructure analyzed for different diffusion mechanisms over a broad range of volume fractions for both phases. The topological properties include the average number of sides, grain topology distribution </span><span style="font-family:Verdana;">and</span><span style="font-family:Verdana;"> the topological size relation function. It is found that the average number of sides depends proportionally on the volume fraction. It increases as the </span><span style="font-family:Verdana;">volumes</span><span style="font-family:Verdana;"> fraction increases and vice versa. Moreover, it is shown that the grain topology distribution in the self-similar growth regime can be described by </span><span style="font-family:Verdana;">time</span><span style="font-family:Verdana;"> unchanged function of the relative grain size. Additionally, topological size function in the simulated microstructure can be evaluated by a quadratic function. Numerical simulations by means of the Monte Carlo Potts model have been provided to simulate grain structures in two-phase polycrystalline materials. The topological features in the simulated microstructure analyzed for different diffusion mechanisms over a broad range of volume fractions for both phases. The topological properties include the average number of sides, grain topology distribution </span><span style="font-family:Verdana;">and</span><span style="font-family:Verdana;"> the topological size relation function. It is found that the average number of sides depends proportionally on the volume fraction. It increases as the </span><span style="font-family:Verdana;">volumes</span><span style="font-family:Verdana;"> fraction increases and vice versa. Moreover, it is shown that the grain topology distribution in the self-similar growth regime can be described by </span><span style="font-family:Verdana;">time</span><span style="font-family:Verdana;"> unchanged function of the relative grain size. Additionally, topological size function in the simulated microstructure can be evaluated by a quadratic function.
作者 Rifa J. El-Khozondar Rifa J. El-Khozondar(Physics Department, Al-Aqsa University, Gaza, Palestine)
机构地区 Physics Department
出处 《Advances in Pure Mathematics》 2020年第9期471-491,共21页 理论数学进展(英文)
关键词 Monte Carlo Potts Model Topology Distribution POLYCRYSTALLINE MICROSTRUCTURE Diffusion Mechanisms Monte Carlo Potts Model Topology Distribution Polycrystalline Microstructure Diffusion Mechanisms
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部