期刊文献+

Proof of Concept for a Twin Prime Number Universe Using Set Theory

Proof of Concept for a Twin Prime Number Universe Using Set Theory
下载PDF
导出
摘要 The Fine Structure Constant (eFSC) Model attempts to give a classical definition to a magical number that underlies much of quantum physics. The Fine Structure Constant (α) value equal to 137.03599206 represents a dimensionless constant that characterizes the strength of the electromagnetic (EM) interaction between subatomic charged particles. Python-generated property counts for the twin prime force F{139/137} show that the adjusted ratio gives a value of α = 137.036. This implies a mathematical framework underlying this constant is based on twin prime numbers and set theory. This study attempts to demonstrate a proof of concept that a hierarchy of fractional twin prime (αII) forces replicates the quantum nature of the universe and is aligned with the Standard Model of Particle Physics. An expanded eFSC Model demonstrates that twin prime forces and their property sets are mathematically viable substitutes for nuclear reactions, as demonstrated for the Beta-minus decay of neutrons into protons. Most significantly, the positive and negative prime numbers define these nuclear reactants and products as positive or negatively charged ions. Furthermore, the eFSC Model provides new insights regarding the hierarchy of EM forces underlying the quantum nature of the universe. The Fine Structure Constant (eFSC) Model attempts to give a classical definition to a magical number that underlies much of quantum physics. The Fine Structure Constant (α) value equal to 137.03599206 represents a dimensionless constant that characterizes the strength of the electromagnetic (EM) interaction between subatomic charged particles. Python-generated property counts for the twin prime force F{139/137} show that the adjusted ratio gives a value of α = 137.036. This implies a mathematical framework underlying this constant is based on twin prime numbers and set theory. This study attempts to demonstrate a proof of concept that a hierarchy of fractional twin prime (αII) forces replicates the quantum nature of the universe and is aligned with the Standard Model of Particle Physics. An expanded eFSC Model demonstrates that twin prime forces and their property sets are mathematically viable substitutes for nuclear reactions, as demonstrated for the Beta-minus decay of neutrons into protons. Most significantly, the positive and negative prime numbers define these nuclear reactants and products as positive or negatively charged ions. Furthermore, the eFSC Model provides new insights regarding the hierarchy of EM forces underlying the quantum nature of the universe.
作者 John R. Crary John R. Crary(Independent Researcher, Lake Zurich, IL, USA)
机构地区 Independent Researcher
出处 《American Journal of Computational Mathematics》 2024年第3期305-317,共13页 美国计算数学期刊(英文)
关键词 Fine Structure Constant (α) Prime Numbers Set Theory Conceptual Model Quantum Physics Light and Matter Beta-Minus Decay Fine Structure Constant (α) Prime Numbers Set Theory Conceptual Model Quantum Physics Light and Matter Beta-Minus Decay
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部