期刊文献+

Risk of Hearing Loss Injury Caused by Multiple Flash Bangs on a Crowd

Risk of Hearing Loss Injury Caused by Multiple Flash Bangs on a Crowd
下载PDF
导出
摘要 A flash bang is a non-lethal explosive device that delivers intensely loud bangs and bright lights to suppress potentially dangerous targets. It is usually used in crowd control, hostage rescue and numerous other missions. We construct a model for assessing quantitatively the risk of hearing loss injury caused by multiple flash bangs. The model provides a computational framework for incorporating the effects of the key factors defining the situation and for testing various sub-models for these factors. The proposed model includes 1) uncertainty in the burst point of flash bang mortar, 2) randomness in the dispersion of multiple submunitions after the flash bang mortar burst, 3) decay of acoustic impulse from a single submunition to an individual subject along the ground surface, 4) the effective combined sound exposure level on an individual subject caused by multiple submunitions at various distances from the subject, and 5) randomness in the spatial distribution of subjects in the crowd. With the mathematical model formulated, we seek to characterize the overall effect of flash bang mortar in the form of an effective injury area. We carry out simulations to study the effects of uncertainty and randomness on the risk of hearing loss injury of the crowd. The proposed framework serves as a starting point for a comprehensive assessment of hearing loss injury risk, taking into consideration all realistic and relevant features of flash bang mortar. It also provides a platform for testing and updating component models. A flash bang is a non-lethal explosive device that delivers intensely loud bangs and bright lights to suppress potentially dangerous targets. It is usually used in crowd control, hostage rescue and numerous other missions. We construct a model for assessing quantitatively the risk of hearing loss injury caused by multiple flash bangs. The model provides a computational framework for incorporating the effects of the key factors defining the situation and for testing various sub-models for these factors. The proposed model includes 1) uncertainty in the burst point of flash bang mortar, 2) randomness in the dispersion of multiple submunitions after the flash bang mortar burst, 3) decay of acoustic impulse from a single submunition to an individual subject along the ground surface, 4) the effective combined sound exposure level on an individual subject caused by multiple submunitions at various distances from the subject, and 5) randomness in the spatial distribution of subjects in the crowd. With the mathematical model formulated, we seek to characterize the overall effect of flash bang mortar in the form of an effective injury area. We carry out simulations to study the effects of uncertainty and randomness on the risk of hearing loss injury of the crowd. The proposed framework serves as a starting point for a comprehensive assessment of hearing loss injury risk, taking into consideration all realistic and relevant features of flash bang mortar. It also provides a platform for testing and updating component models.
出处 《American Journal of Operations Research》 2018年第4期239-265,共27页 美国运筹学期刊(英文)
关键词 RISK of Significant HEARING Loss Mathematical Framework for Assessing INJURY RISK Effective INJURY Area Decay of Acoustic Impulse along Ground Surface DOSE-RESPONSE Relation FLUCTUATIONS in Actual INJURY Numbers Risk of Significant Hearing Loss Mathematical Framework for Assessing Injury Risk Effective Injury Area Decay of Acoustic Impulse along Ground Surface Dose-Response Relation Fluctuations in Actual Injury Numbers
  • 相关文献

参考文献3

二级参考文献1

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部