期刊文献+

Detection of Edge with the Aid of Mollification Based on Wavelets

Detection of Edge with the Aid of Mollification Based on Wavelets
下载PDF
导出
摘要 In preceding papers, the present authors proposed the application of the mollification based on wavelets to the calculation of the fractional derivative (fD) or the derivative of a function involving noise. We study here the application of that method to the detection of edge of a function. Mathieu et al. proposed the CRONE detector for a detection of an edge of an image. For a function without noise, we note that the CRONE detector is expressed as the Riesz fractional derivative (fD) of the derivative. We study here the application of the mollification to the calculation of the Riesz fD of the derivative for a data involving noise, and compare the results with the results obtained by our method of applying simple derivative to mollified data. In preceding papers, the present authors proposed the application of the mollification based on wavelets to the calculation of the fractional derivative (fD) or the derivative of a function involving noise. We study here the application of that method to the detection of edge of a function. Mathieu et al. proposed the CRONE detector for a detection of an edge of an image. For a function without noise, we note that the CRONE detector is expressed as the Riesz fractional derivative (fD) of the derivative. We study here the application of the mollification to the calculation of the Riesz fD of the derivative for a data involving noise, and compare the results with the results obtained by our method of applying simple derivative to mollified data.
出处 《Applied Mathematics》 2014年第18期2849-2861,共13页 应用数学(英文)
关键词 Mollification EDGE DETECTOR RIESZ Fractional Derivative Mollifiers Based on WAVELETS Gibbs Phenomenon PRIMITIVE CRONE fD DETECTOR Mollification Edge Detector Riesz Fractional Derivative Mollifiers Based on Wavelets Gibbs Phenomenon Primitive CRONE fD Detector

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部