期刊文献+

The Number of Matching Equivalent for the Union Graph of Vertices and Cycles

The Number of Matching Equivalent for the Union Graph of Vertices and Cycles
下载PDF
导出
摘要 For two graphs <em>G</em> and<em> H</em>, if <em>G</em> and <em>H</em> have the same matching polynomial, then <em>G</em> and <em>H</em> are said to be matching equivalent. We denote by <em>δ </em>(<em>G</em>), the number of the matching equivalent graphs of <em>G</em>. In this paper, we give <em>δ </em>(<em>sK</em><sub>1</sub> ∪ <em>t</em><sub>1</sub><em>C</em><sub>9</sub> ∪ <em>t</em><sub>2</sub><em>C</em><sub>15</sub>), which is a generation of the results of in <a href="#ref1">[1]</a>. For two graphs <em>G</em> and<em> H</em>, if <em>G</em> and <em>H</em> have the same matching polynomial, then <em>G</em> and <em>H</em> are said to be matching equivalent. We denote by <em>δ </em>(<em>G</em>), the number of the matching equivalent graphs of <em>G</em>. In this paper, we give <em>δ </em>(<em>sK</em><sub>1</sub> ∪ <em>t</em><sub>1</sub><em>C</em><sub>9</sub> ∪ <em>t</em><sub>2</sub><em>C</em><sub>15</sub>), which is a generation of the results of in <a href="#ref1">[1]</a>.
作者 Xiaoling Wang Xiaoling Wang(School of Mathematics and Statistics, Qinghai Nationalities University, Xining, China)
出处 《Applied Mathematics》 2021年第6期471-476,共6页 应用数学(英文)
关键词 GRAPH Matching Polynomial Matching Equivalence Graph Matching Polynomial Matching Equivalence
  • 相关文献

参考文献7

二级参考文献13

  • 1郭知熠,俞玉森.关于两类图的匹配唯一性[J].应用数学,1989,2(2):25-30. 被引量:29
  • 2Godsil C D. Algebraic Combinatorics. New York, Chapman and Hall, 1993.
  • 3Farrell E J. An introduction to matching polynomial. J. Combinatoria Theory, 1979, 27(B): 75-86.
  • 4Farrell E J and Guo J M. On the characterizing properties of matching polynomials.Vishwa International Journal of Graph Theory, 1993, 2(1): 55--62.
  • 5Beezer R A and Farrell E J. The matching polynomials of a regular graph. Discrete Math., 1995,137: 7-8.
  • 6Cvetkvic D M, Doob M and Sachs H. Spectra of Graphs. New York, Academic Press, 1980.
  • 7Farrell E J,J Graph Theory,1993年,2卷,1期,55页
  • 8李改杨,应用数学,1993年,3期,53页
  • 9GODSIL C D.Algebraic combinatorics[M].New York,London:Chapman and Hall,1993.
  • 10马海成.两类图的匹配等价类[J].数学研究,2000,33(2):218-222. 被引量:44

共引文献68

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部