摘要
For two graphs <em>G</em> and<em> H</em>, if <em>G</em> and <em>H</em> have the same matching polynomial, then <em>G</em> and <em>H</em> are said to be matching equivalent. We denote by <em>δ </em>(<em>G</em>), the number of the matching equivalent graphs of <em>G</em>. In this paper, we give <em>δ </em>(<em>sK</em><sub>1</sub> ∪ <em>t</em><sub>1</sub><em>C</em><sub>9</sub> ∪ <em>t</em><sub>2</sub><em>C</em><sub>15</sub>), which is a generation of the results of in <a href="#ref1">[1]</a>.
For two graphs <em>G</em> and<em> H</em>, if <em>G</em> and <em>H</em> have the same matching polynomial, then <em>G</em> and <em>H</em> are said to be matching equivalent. We denote by <em>δ </em>(<em>G</em>), the number of the matching equivalent graphs of <em>G</em>. In this paper, we give <em>δ </em>(<em>sK</em><sub>1</sub> ∪ <em>t</em><sub>1</sub><em>C</em><sub>9</sub> ∪ <em>t</em><sub>2</sub><em>C</em><sub>15</sub>), which is a generation of the results of in <a href="#ref1">[1]</a>.
作者
Xiaoling Wang
Xiaoling Wang(School of Mathematics and Statistics, Qinghai Nationalities University, Xining, China)