期刊文献+

Function Projective Synchronization between Two Discrete-Time Hyperchaotic Systems Using Backstepping Method

Function Projective Synchronization between Two Discrete-Time Hyperchaotic Systems Using Backstepping Method
下载PDF
导出
摘要 We realize the function projective synchronization (FPS) between two discrete-time hyperchaotic systems, that is, the drive state vectors and the response state vectors can evolve in a proportional scaling function matrix. In this paper, a systematic scheme is explored to investigate the function projective synchronization of two identical discrete-time hyperchaotic systems using the backstepping method. Additionally, FPS of two different hyperchaotic systems is also realized. Numeric simulations are given to verify the effectiveness of our scheme. We realize the function projective synchronization (FPS) between two discrete-time hyperchaotic systems, that is, the drive state vectors and the response state vectors can evolve in a proportional scaling function matrix. In this paper, a systematic scheme is explored to investigate the function projective synchronization of two identical discrete-time hyperchaotic systems using the backstepping method. Additionally, FPS of two different hyperchaotic systems is also realized. Numeric simulations are given to verify the effectiveness of our scheme.
作者 Xin Li Xin Li(School of Mathematics and Statistics, Changshu Institute of Technology, Changshu, China)
出处 《Applied Mathematics》 2022年第2期178-190,共13页 应用数学(英文)
关键词 Function Projective Synchronization Discrete-Time Hyperchaotic System Backstepping Method Function Projective Synchronization Discrete-Time Hyperchaotic System Backstepping Method
  • 相关文献

参考文献3

二级参考文献17

  • 1方建平,郑春龙,朱加民.Boiti-Leon-Pempinelli系统的新变量分离解及其方形孤子和分形孤子[J].物理学报,2005,54(7):2990-2995. 被引量:29
  • 2Ott E, Grebogi C and York J A 1990 Phys. Rev. Lett. 64 1196.
  • 3Zhou C S and Chen T L 1996 Chin. Phys. Lett. 13 572.
  • 4Tan W and Wang Y N 2005 Chin. Phys. 14 72.
  • 5Chert G R and Lii J H 2003 (Beijing: Science Press).
  • 6Peng B, Petro V and Showalter K 1991 J. Phys. Chem. 95 4957.
  • 7Wang J G and Zhao Y 2005 Chin. Phys. Lett. 22 2508.
  • 8Pyragas K 1992 Phys. Lett. A 170 421.
  • 9Abed F H, Wang H O and Chen R C 1994 Physica D 70 154.
  • 10Mirus K A and Sprott J C 1999 Phys. Rev. E 59 5313.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部