期刊文献+

An Iterative Algorithm for Generalized Mixed Equilibrium Problems and Fixed Points of Nonexpansive Semigroups 被引量:1

An Iterative Algorithm for Generalized Mixed Equilibrium Problems and Fixed Points of Nonexpansive Semigroups
下载PDF
导出
摘要 In this works, by using the modified viscosity approximation method associated with Meir-Keeler contractions, we proved the convergence theorem for solving the fixed point problem of a nonexpansive semigroup and generalized mixed equilibrium problems in Hilbert spaces. In this works, by using the modified viscosity approximation method associated with Meir-Keeler contractions, we proved the convergence theorem for solving the fixed point problem of a nonexpansive semigroup and generalized mixed equilibrium problems in Hilbert spaces.
出处 《Journal of Applied Mathematics and Physics》 2017年第2期276-293,共18页 应用数学与应用物理(英文)
关键词 Meir-Keeler Contraction MAPPINGS Left Regular Generalized Mixed Equilibrium Problems Variational INEQUALITIES α-Inverse Strongly MONOTONE MAPPINGS NONEXPANSIVE SEMIGROUPS Meir-Keeler Contraction Mappings Left Regular Generalized Mixed Equilibrium Problems Variational Inequalities α-Inverse Strongly Monotone Mappings Nonexpansive Semigroups
  • 相关文献

参考文献2

二级参考文献36

  • 1Ceng L C, Ansari Q H, Yao J C. Viscosity approximation methods for generalized equilibrium problems and fixed point problems. J Global Opt, 2009, 43:487-502.
  • 2Chadli O, Schaible S, Yao J C. Regularized equilibrium problems with an application to noncoercive hemivariational inequalities. J Opt Theory Appl, 2004, 121:571-596.
  • 3Chang S S, Lee H W J, Chan C K. A new method for solving equilibrium problem fixed point problem and variational inequMity problem with application to optimization. Nonlinear Anal, 2009, 70:3307-3319.
  • 4Chang S S, Huang J, Wang X, Kim J K. Implicit iteration process for common fixed points of strictly asymptotically pseudocontractive mappings in Banach spaces, Fixed Point Theory Appl, 2008: 1-12, ID 324575.
  • 5Chadli O, Wong N C, Yao J C. Equilibrium problems with applications to eigenvalue problems. J Optim Theory Appl, 2003, 117:245-266.
  • 6Colao V, Marino G, Xu H K. An iterative method for finding common solutions of equilibrium and fixed point problems. J Math Anal Appl, 2008, 344:340-352.
  • 7Iiduka H, Takahashi W. Strong convergence theorems for nonexpansive mappings and inverse-strongly monotone mappings. Nonlinear Anal, 2005, 61:341-350.
  • 8Iiduka H, Takahashi W, Toyoda M. Approximation of solutions of variational inequalities for monotone mappings. Panamer Math J, 2004, 14:49 61.
  • 9Kim J K, Sahu D R, Nam Y M. Convergence theorem for fixed points of nearly uniformly L-lipschitzian asymptotically generalized ~-hemicontractive mappings. Nonlinear Anal TMA, 2009, 71:2833-2838.
  • 10Kim J K, Cho S Y, Qin X. Hybrid projection algorithms for generalized equilibrium problems and strictly pseudocontractive mappings. J Ineq Appl, 2010:1 18, ID 312602.

共引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部