期刊文献+

Patchwise Mapping Method for Solving Elliptic Boundary Value Problems Containing Multiple Singularities

Patchwise Mapping Method for Solving Elliptic Boundary Value Problems Containing Multiple Singularities
下载PDF
导出
摘要 In the paper [1], the geometrical mapping techniques based on Non-Uniform Rational B-Spline (NURBS) were introduced to solve an elliptic boundary value problem containing a singularity. In the mapping techniques, the inverse function of the NURBS geometrical mapping generates singular functions as well as smooth functions by an unconventional choice of control points. It means that the push-forward of the NURBS geometrical mapping that generates singular functions, becomes a piecewise smooth function. However, the mapping method proposed is not able to catch singularities emerging at multiple locations in a domain. Thus, we design the geometrical mapping that generates singular functions for each singular zone in the physical domain. In the design of the geometrical mapping, we should consider the design of control points on the interface between/among patches so that global basis functions are in C0?space. Also, we modify the B-spline functions whose supports include the interface between/among them. We put the idea in practice by solving elliptic boundary value problems containing multiple singularities. In the paper [1], the geometrical mapping techniques based on Non-Uniform Rational B-Spline (NURBS) were introduced to solve an elliptic boundary value problem containing a singularity. In the mapping techniques, the inverse function of the NURBS geometrical mapping generates singular functions as well as smooth functions by an unconventional choice of control points. It means that the push-forward of the NURBS geometrical mapping that generates singular functions, becomes a piecewise smooth function. However, the mapping method proposed is not able to catch singularities emerging at multiple locations in a domain. Thus, we design the geometrical mapping that generates singular functions for each singular zone in the physical domain. In the design of the geometrical mapping, we should consider the design of control points on the interface between/among patches so that global basis functions are in C0?space. Also, we modify the B-spline functions whose supports include the interface between/among them. We put the idea in practice by solving elliptic boundary value problems containing multiple singularities.
作者 Hyunju Kim
出处 《Journal of Applied Mathematics and Physics》 2019年第7期1572-1598,共27页 应用数学与应用物理(英文)
关键词 Mapping Method NON-UNIFORM Rational B-SPLINE (NURBS) GALERKIN Approximation Isogeometric Analysis MULTIPLE SINGULARITIES Mapping Method Non-Uniform Rational B-Spline (NURBS) Galerkin Approximation Isogeometric Analysis Multiple Singularities
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部