摘要
We consider the optical rotation of the polarization of a linearly polarized probe field passing through an M-type atomic system by using the interaction between two vortex control fields and optical transitions. We investigate theoretically to generate the spatially dependent structured light with the atoms acting as a spatially varying circular birefringent medium. We show that the polarization and intensity distributions of the vector beam spatially vary by changing the orbital angular momentum (OAM) of the vortex control field.
We consider the optical rotation of the polarization of a linearly polarized probe field passing through an M-type atomic system by using the interaction between two vortex control fields and optical transitions. We investigate theoretically to generate the spatially dependent structured light with the atoms acting as a spatially varying circular birefringent medium. We show that the polarization and intensity distributions of the vector beam spatially vary by changing the orbital angular momentum (OAM) of the vortex control field.
作者
Zhenzhu Li
Zhenzhu Li(Department of Physics, University of Shanghai for Science and Technology, Shanghai, China)