期刊文献+

A Novel Method for Solving Nonlinear Schrödinger Equation with a Potential by Deep Learning

A Novel Method for Solving Nonlinear Schrödinger Equation with a Potential by Deep Learning
下载PDF
导出
摘要 The improved physical information neural network algorithm has been proven to be used to study integrable systems. In this paper, the improved physical information neural network algorithm is used to study the defocusing nonlinear Schr&#246;dinger (NLS) equation with time-varying potential, and the rogue wave solution of the equation is obtained. At the same time, the influence of the number of network layers, neurons and the number of sampling points on the network performance is studied. Experiments show that the number of hidden layers and the number of neurons in each hidden layer affect the relative L<sub>2</sub>-norm error. With fixed configuration points, the relative norm error does not decrease with the increase in the number of boundary data points, which indicates that in this case, the number of boundary data points has no obvious influence on the error. Through the experiment, the rogue wave solution of the defocusing NLS equation is successfully captured by IPINN method for the first time. The experimental results of this paper are also compared with the results obtained by the physical information neural network method and show that the improved algorithm has higher accuracy. The results of this paper will be contributed to the generalization of deep learning algorithms for solving defocusing NLS equations with time-varying potential. The improved physical information neural network algorithm has been proven to be used to study integrable systems. In this paper, the improved physical information neural network algorithm is used to study the defocusing nonlinear Schr&#246;dinger (NLS) equation with time-varying potential, and the rogue wave solution of the equation is obtained. At the same time, the influence of the number of network layers, neurons and the number of sampling points on the network performance is studied. Experiments show that the number of hidden layers and the number of neurons in each hidden layer affect the relative L<sub>2</sub>-norm error. With fixed configuration points, the relative norm error does not decrease with the increase in the number of boundary data points, which indicates that in this case, the number of boundary data points has no obvious influence on the error. Through the experiment, the rogue wave solution of the defocusing NLS equation is successfully captured by IPINN method for the first time. The experimental results of this paper are also compared with the results obtained by the physical information neural network method and show that the improved algorithm has higher accuracy. The results of this paper will be contributed to the generalization of deep learning algorithms for solving defocusing NLS equations with time-varying potential.
作者 Chaojun Zhang Yuexing Bai Chaojun Zhang;Yuexing Bai(College of Arts and Sciences, Shanghai Maritime University, Shanghai, China;Ordos Science and Technology Development Center, Ordos, China)
出处 《Journal of Applied Mathematics and Physics》 2022年第10期3175-3190,共16页 应用数学与应用物理(英文)
关键词 Physics-Informed Neural Networks Improved Physics-Informed Neural Net-works Defocusing NLS Equation Rogue Wave Solution Physics-Informed Neural Networks Improved Physics-Informed Neural Net-works Defocusing NLS Equation Rogue Wave Solution
  • 相关文献

参考文献3

二级参考文献1

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部